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Categories, our mathematical contexts

what is a CATEGORY ?

{
a collection of objects A , Bic, . . such that :

a collection of morphisms fig ,hi .

• each morphism has a specified domain and •domain

f. A→ B

• for each object we have an identity morphism
1A : A→A

• for each pair f. A→B , g :B→C , we have a composite

gf : A → C
given f.A→B , we have

subject to the following axioms : { f1A=f=1☐f

given f :A→B. g :B→c ,
h :[→D

HL9f)= (hg If
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• Grp : → Objects : groups
→ Morphisms : Corp (6,1-1) = group homomorphisms G→H
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Examples of categories
• 11 : → Objects : a single object *

→ Morphisms : 111¥ ,*f- { 1* :*→*}

Let G be a group :

⑧ G- : → Objects : a single object *

→ Morphisms : G-(*,* ) = G ba

→ composition : group operation *a-*b-* = *-*
16

Identity : the neutral element *→*

Let A be a category :
• A
"

: → objects : the same as A

→ Morphisms : AHA, A
'

)-A1A
'

,
A) + identity and composition

of AA→AA" = ANATA"



K Sameness >> of objects
let A be a category
⑥

•

③



⇐ Sameness >> of objects
let A be a category
• A morphism f : A→ B in A is called an

isomorphism if there exists another morphism

f-! B.→ A such that : •

⑦

•

③



K Sameness >> of objects
let A be a category
• A morphism f : A→ B in A is called an

isomorphism if there exists another morphism

f-?B- A such that : • f- f-
'
= 1ps :B→ B

⑦

•

③



K Sameness >> of objects
let A be a category
• A morphism f : A→ B in A is called an

isomorphism if there exists another morphism

f-?B- A such that : • f- f-
'
= 1ps :B→ B

• f-
'

f = 1A : A→A

•

③



⇐ Sameness >> of objects
let A be a category
• A morphism f : A→ B in A is called an

isomorphism if there exists another morphism

f-?B- A such that : • f- f-
'
= 1ps :B→ B

• f-
'

f = 1A : A→A

such f- ' is unique and it is called the inverse of f

•

③



K Sameness >> of objects
let A be a category
• A morphism f : A→ B in A is called an

isomorphism if there exists another morphism

f-?B- A such that : • f- f-
'
= 1ps :B→ B

• f-
'

f = 1A : A→A

such f- ' is unique and it is called the inverse of f

• Two objects A.B in A are isomorphic if there exists

an isomorphism f :A→B connecting them .

③



⇐ Sameness >> of objects
let A be a category
• A morphism f : A→ B in A is called an

isomorphism if there exists another morphism

f-?B- A such that : • f- f-
'
= 1ps :B→ B

• f-
'

f = 1A : A→A

such f- ' is unique and it is called the inverse of f

• Two objects A.B in A are isomorphic if there exists

an isomorphism f :A→B connecting them .

-of
"

◦ Isomorphic objects have the same viewpoint A1A ,c)≤A /B ,c)
for all C



⇐ Sameness >> of objects
let A be a category
• A morphism f : A→ B in A is called an

isomorphism if there exists another morphism

f-?B- A such that : • f- f-
'
= 1ps :B→ B

• f-If = 1A : A→A

such f- ' is unique and it is called the inverse of f

• Two objects A.B in A are isomorphic if there exists

an isomorphism f :A→B connecting them .

-of
"

◦ Isomorphic objects have the same viewpoint A1A ,c)≤A /B ,c)
to -
for all C

and the rest of objects see them as the same Af ,A)≤AK ,B)
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consists of :

• a function objldl→ obj (B) : A- FIA )

•
a function A /A. A

' )→ D1T-1AI , F1A
'

))

f- FH1

subject to the following axioms :

• for every Atobj (A) , FL1A / = IF1A

• for every AHA
' -91A" in A

,
Flgf ) = F19 1FH )
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Examples of functors
← category of abelian groups

◦ Hn : Top → Ab with group homomorphisms

✗- th / ✗ I nth homology group
[✗ ᵗ→Y)- ftp.lf/:HnlXl-iHnlY1/:-- induced morphism

in homology

◦ P : set→ set

✗ P1H : = set of subsets of ✗

IX4Y] 1- [PH1 :P/✗ I→ P1H] : = induced function between the

power sets
✗↑ ≤✗↳ {+1×1} ≤ Y

set✗
1
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Examples of functors
Let G

,
H be groups

• F : G- → I

obj (E) → obj (1) : * 1- *

G- 1*1*1→ III.
*) : g- Fig , sit /

F = ↳⇔

↓
" Flgg

' )=F(g) Fig
'

)

it is nothing but a group homomorphism !

◦ F : G- → Set

obj (E) → Obj (set ) : * 1- F1H

G = G- 1*1*1→ set /FH1, Ffx) ) : gi→F(g) st . /
F = ↳⇔

Flgg
' )=F (g) Fig

'

)

it is nothing but a left G- set !
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A4B
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ha tells us what the category A sees of the object A
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• A functor FA→8 is called fully faithful if

for every pair A.BE obj (A) the functions

A1A,B) F- 8117A ) , f-(B)I

are bijective .

◦ Example :

Ab _tGrp ( morphisms in Ab

G- ( (G) :=G are the homomorphisms

✗ EH11-4IF ) :=f : G→ µ]
of groups )
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,
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Categories of functors
Let A

,
8 be two locally small categories

Let F
, G.H be functors A→8

• We can compose natural transformations :

✗ IF ⇒G
, A G ⇒ H up pa : F ⇒ H given by

(G)A Bada : F1A /→ H1A )

◦ There is an identity natural transformation :

Ip : F ⇒ F given by 11F)
A IF(A)

◦ Therefore, we can form a category of functors Fun (A,B) with
objects the functors and morphisms the natural transformations
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Examples of natural transformations

•

≤¥7 set
¥ ✗ ±, y

✗* : ✗→ Y in set st for all GEEK,*) g f o f g
✗ ¥ Y

in other words , 419×1=92*1×1 face ✗ to EG

→ this is nothing but a G- equivariant map of left G- sets !

we have that Fun (E. Set / = category of left G- sets + equiv maps
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A ¥1B
condition
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A

⑦ "tA ✗ *
: A → B in A st

. g.
A# B HIS,¥fn
* ↓"

B

→ this is nothing but a morphism in A ⇒ Fun A) =A
.

t.se I
~

• Set↓et ✗
×
: 1*1×1→ PIX) in set

p
I 1- {×}

for all f. ✗→ Y in Set we have ✗ py
+ ↓ G f. pay

,

indeed :

✗EX - late PLX ) Y PIYI

I I
fatty 1- {fact}tPY)
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Functors encoding the viewpoint of an object
⇐ A category is a world of objects, all looking at one

another
.

Each sees the world from a different viewpoint >>

Tom Leinster

• The information of what an object A of a category A
sees of A is codified by the functor h? A→ set

• The information of what the category A sees of one of

its objects A is codified by the functor hA°P→ Set

• we say that a functor F : A→ Set ( resp F : A
"
- set )

is representable if it is naturally isomorphic to a

functor HA ( resp ha ) for some Atobj(A) .
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The Yoneda embedding
Let to be a locally small category .

The functor

A Fun IA0P, set )
A- HA

AH B hf : ha ⇒ has given, for all Ctobj (A), by

lhfli AKA ) AK,B) :(g :(→A)→ [fg :(→B)
is fully faithful

sketch of the proof
Yoneda Lemma gives us a bijection f- (A)→ Fun IA0P, set ) ( ha ,F)

Take F=hB ⇒ ↳ (A) =A1A ,B)→ Fun IA0P, set ) ( ha ,ht which

is precisely the function ⊕ .
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,

it is fully determined by ha .

Indeed
, if A sees two objects A and B as indistinguishable

that is
,

h
A
≤ hB

then
,
A and B are the ⇐same>> in A

that is
,

A ≤ B.
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In general , in order to fully characterize an object At Obj (A)
need all the information of hA

But there are certain categories were less is required :

✗ E Obj ( set ) is fully determined by set (1*1,4)

1*4 f-✗ = ✗ c-✗

Sets are determined by their points !
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a space ( topological space , manifold , abelian variety , scheme ,

stack . ) in which each point represents one object , two

non - isomorphic objects are represented by different points

and objects that are ⇐similar>> are <<closeby >> in this

space .

Example : the real line R is the moduli space classifying the

real numbers
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Moduli spaces

◦ Problem : We want to study a moduli space M classifying
certain objects .

What does it look like ?

1*4- M sees the points of M
in a certain

10,11→ M sees the paths of M / category of
spaces space

IR- M sees the curves of M

: :

what Yoneda lemma is telling us is that M is fully
determined by what the other spaces see of M
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More general spaces

we want to build an M from what all the spaces in

our category Spac see :

ell : Spain→ Set

✗ - what ✗ sees of M

it all is representable OY -7hm we obtain our space

what if not? Just consider all as a space itself !

We do not see it , but we know how it

is perceived by different spaces, and this
is often enough to do geometry !
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