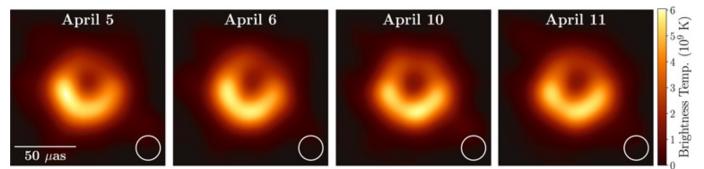
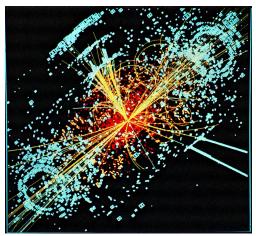
THE YONEDA LEMMA or why we know what a black hole is without being able to see it

BSSM 2022 29/08/2022

Julia Ramos González UCLouvain



The Event Horizon Telescope Collaboration et al 2019 ApJL 875 L4 (License: <u>CC-BY-3.0</u>, unmodified image)



© 1997-2022 CERN (License: <u>CC-BY-SA-4.0</u>, unmodified image) http://cdsweb.cern.ch/record/628469

Categories, our mathematical contexts

What is a CATEGORY?

f a collection of objects A, B, C,

What is a CATEGORY?

fa collection of objects A, B, C, La collection of morphisms f, g, h,

such that

- fa collection of objects A, B, C, La collection of morphisms f, g, h, such that
- · each morphism has a specified domain and codomain $f A \rightarrow B$

- fa collection of objects A, B, C, La collection of morphisms f, g, h, such that
- · each morphism has a specified domain and codomain $f A \rightarrow B$
- for each object we have an identity morphism

$$1_A \land \longrightarrow \land$$

- fa collection of objects A, B, C, La collection of morphisms f, g, h, such that
- · each morphism has a specified domain and codomain $f A \rightarrow B$
- for each object we have an identity morphism $1_{\Delta} A \longrightarrow A$
- for each pair f A→B, g B→C, we have a composite $gf A \longrightarrow C$ subject to the following axioms {

What is a CATEGORY?

- fa collection of objects A, B, C, La collection of morphisms f, g, h, such that
- · each morphism has a specified domain and codomain $f A \rightarrow B$
- for each object we have an identity morphism $1_{\Delta} A \longrightarrow A$
- for each pair f A→B, g B→C, we have a composite

gf $A \rightarrow C$ subject to the following axioms $\begin{cases} given f A \rightarrow B, we have \\ f A = f = 1_B f \end{cases}$

What is a CATEGORY?

- fa collection of objects A, B, C, La collection of morphisms f, g, h, such that
- · each morphism has a specified domain and codomain $f A \rightarrow B$
- for each object we have an identity morphism $1_{\Delta} A \longrightarrow A$
- for each pair f A→B, g B→C, we have a composite

 $gf A \longrightarrow C$ given $f A \rightarrow B$, we have $f A_A = f = 1_B f$ given $f A \rightarrow B$, $g B \rightarrow C$, $h C \rightarrow D$ subject to the following axioms h(gf) = (hg)f

Set -> Objects sets
 Morphisms Set (A, B) = functions from A to B
 -> composition of functions & identity functions

Set → Objects sets
→ Morphisms Set (A, B) = functions from A to B
→ composition of functions & identity functions
Grp -> Objects groups
→ Morphisms Grp (G, H) = group homomorphisms G → H
→ composition of homomorphisms & identity

• Set - Objects sets - Morphisms Set (A, B) = functions from A to B - o composition of functions & identity functions • Grp - D Objects groups $Grp(G,H) = group homomorphisms G \rightarrow H$ -o Morphisms -o composition of homomorphisms & identity • Top _ Objects topological spaces

- Morphismo Top(X,Y) = continuous maps $X \rightarrow Y$

- Composition of continuous maps & dentities

Examples of catigorus • 1 - Objects a single object * -> Morphisms $\mathcal{A}(*,*) = \{1_* * \longrightarrow *\}$ Let G be a group • <u>G</u> - Objects a single object * -> Morphisms G(*,*) = G-> composition group operation $* \xrightarrow{a} * -$ Identity the neutral element $* \xrightarrow{1_G} *$

Examples of catigorus -> Objects a single object * • 1 -> Morphisms $\mathcal{A}(*,*) = \{1_* * \longrightarrow *\}$ Let G be a group • G - Objects a single object * - Morphisms G(*,*) = G-b composition group operation $* \xrightarrow{\alpha} * -$ Identity the neutral element $* \xrightarrow{1_G} *$ Let \land be a category • $A^{\text{eff}} \rightarrow \text{objects}$ the same as A \rightarrow Morphisms $A^{q}(A, A') = A(A', A) + identity and composition$ 아 셔 $A \rightarrow A' \rightarrow A'' = A \overleftarrow{} A' \overleftarrow{} A''$

Let A be a category

Let A be a category

• A morphism $f A \longrightarrow B$ in A is called an isomorphism if there exists another morphism $f^{-1} B \longrightarrow A$ such that •

Let A be a category

• A morphism $f A \longrightarrow B$ in A is called an isomorphism if there exists another morphism $f^{-1} B \longrightarrow A$ such that • $ff^{-1} = 1_B B \longrightarrow B$

Let A be a category

• A morphism $f A \longrightarrow B$ in A is called an isomorphism if there exists another morphism $f^{-1} B \longrightarrow A$ such that $ff^{-1} = 1_B B \longrightarrow B$ $f^{-1}f = 1_A A \longrightarrow A$

Let A be a category

• A morphism $f A \longrightarrow B$ in A is called an isomorphism if there exists another morphism $f^{-1} B \longrightarrow A$ such that • $f f^{-1} = 1_B B \longrightarrow B$ • $f^{-1} f = 1_A A \longrightarrow A$ Such f^{-1} is unique and it is called the inverse of f

Let A be a category

• A morphism $f A \longrightarrow B$ in A is called an isomorphism if there exists another morphism $f^{-1} B \longrightarrow A$ such that $f^{-1} = 1_B B \longrightarrow B$ • $f^{-1}f = 1_A \land \longrightarrow \land$ such f⁻¹ is unique and it is called the inverse of f • Two objects A, B in A are isomorphic if there exists

Let A be a category

- A morphism $f A \rightarrow B$ in A is called an isomorphism if there exists another morphism $f^{-1} B \rightarrow A$ such that • $f f^{-1} = 1_B B \rightarrow B$ • $f^{-1} f = 1_A A \rightarrow A$ such f^{-1} is unique and it is called the inverse of fThe dest A B is down comprehended to be existent
- Two objects A, B in A are isomorphic if there exists an isomorphism $f A \rightarrow B$ connecting them
- Isomorphic objects have the same newpoint \$\overline{A}(A,C) \overline{A}(B,C)\$
 for all C

Let A be a category

A morphism f A→B in A is called an isomorphism if there exists another morphism f⁻¹ B→A such that • ff⁻¹=1_B B→B • f⁻¹f=1_A A→A such f⁻¹ is unique and it is called the inverse of f
Two objects A,B in A are isomorphic if there exists

an isomorphism fA-B connecting them

• Isomorphic objects have the same newpoint $\mathcal{A}(A,C) \cong \mathcal{A}(B,C)$ and the rest of objects see them as the same $\mathcal{A}(C,A) \cong \mathcal{A}(C,B)$

Let A, B be two categories A functor $F A \longrightarrow B$ consists of

- •
- •

Let A, B be two categories A functor $F A \longrightarrow B$

consists of

• a function $ob_{\mathcal{A}}(\mathcal{A}) \longrightarrow ob_{\mathcal{A}}(\mathcal{B}) \land H \longrightarrow F(\mathcal{A})$

Let A, B be two categories A functor $F A \longrightarrow B$

consists of

- a function $ob_{J}(A) \longrightarrow ob_{J}(B) A \longmapsto F(A)$
- a function $\mathcal{A}(A, A') \longrightarrow \mathcal{B}(F(A), F(A'))$

 $f \mapsto F(f)$

Let A, B be two categories A functor $F A \longrightarrow B$

consists of

- a function $ob_{J}(A) \longrightarrow ob_{J}(B) \land H \longrightarrow F(A)$
- a function $\mathcal{A}(A, A') \longrightarrow \mathcal{B}(F(A), F(A'))$

 $f \mapsto F(f)$

subject to the following ascions

Let A, B be two categories A functor $F A \longrightarrow B$

consists of

- a function $ob_{\mathcal{A}} \longrightarrow ob_{\mathcal{A}} (\mathcal{B}) \xrightarrow{} A \longrightarrow F(A)$
- a function $\mathcal{A}(A, A') \longrightarrow \mathcal{B}(F(A), F(A'))$

 $f \mapsto F(f)$

subject to the following accords

• for every $A \in ob_{I}(A)$, $F(1_{A}) = 1_{F(A)}$

Let A, B be two categories A functor $F A \longrightarrow B$

consists of

- a function $ob_{J}(A) \longrightarrow ob_{J}(B) \land H \longrightarrow F(A)$
- a function $\mathcal{A}(A, A') \longrightarrow \mathcal{B}(F(A), F(A'))$

 $f \mapsto F(f)$

subject to the following axioms

• for every
$$A \in ob_{I}(A)$$
, $F(1_{A}) = 1_{F(A)}$

• for every $A \xrightarrow{f} A' \xrightarrow{g} A''$ in A, F(gf) = F(g)F(f)

• \bigcup Grp \longrightarrow Set

 \mapsto

 \mapsto

• \bigcup Grp \longrightarrow Set G $\longmapsto \bigcup(G) =$ the underlying set of the group G

U Grp → Set G → U(G) = the underlying set of the group G [G + +] → [U(f) U(G) → U(+)] = the underlying function of the group homomorphism f

U Grp → Set G → U(G) = the underlying set of the group G [G + +] → [U(f) U(G) → U(+)] = the underlying function of the group homomorphism f

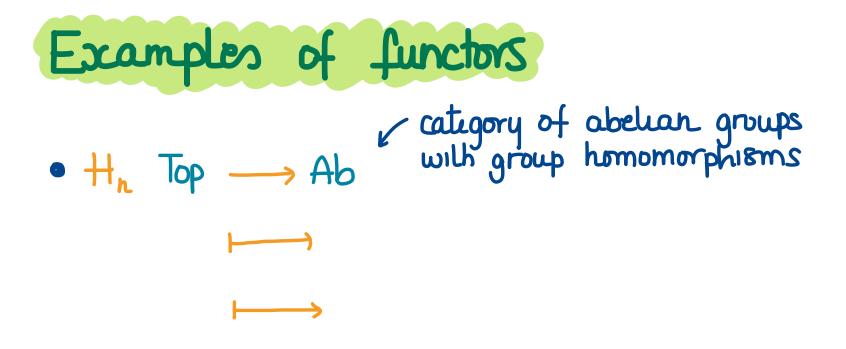
• F Set --- > Grp

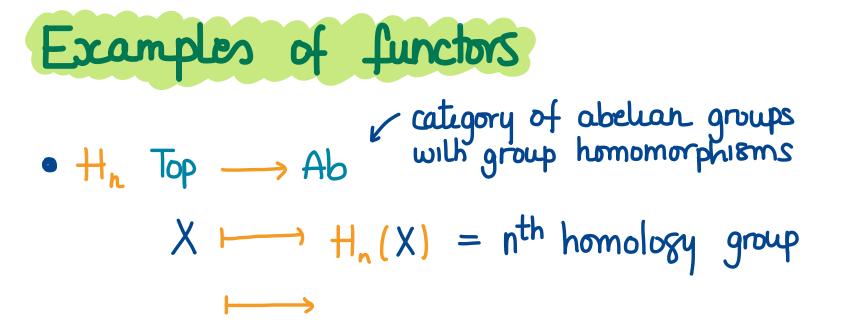
 \mapsto

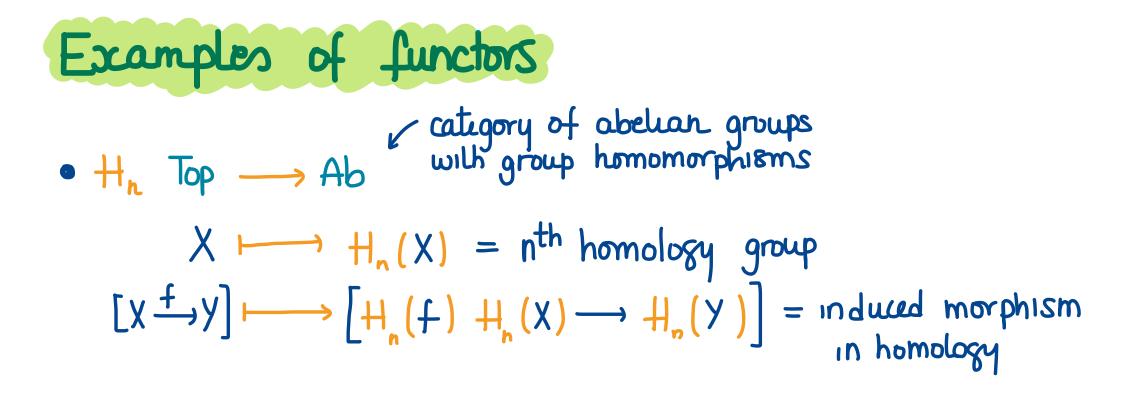
• F Set
$$\longrightarrow$$
 Grp
X \longmapsto F(X) = the free group generated by the set X

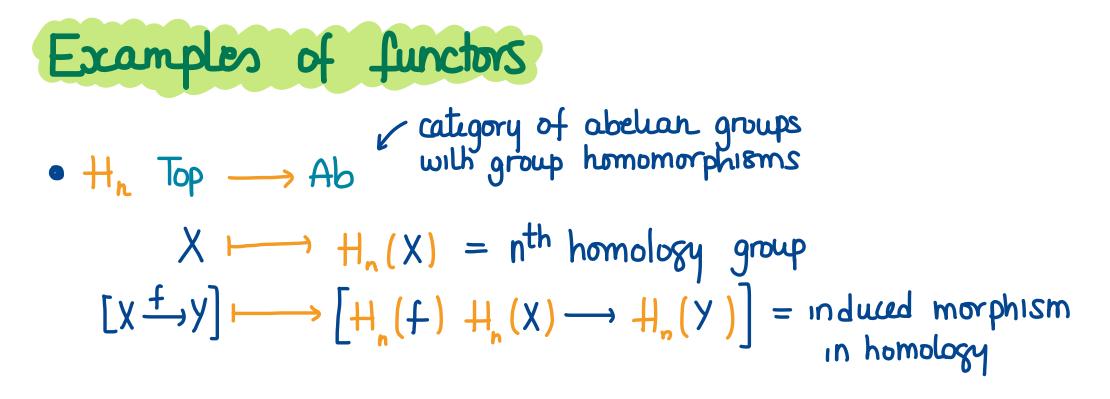
U Grp → Set G → U(G) = the underlying set of the group G [G + + +] → [U(f) U(G) → U(++)] = the underlying function of the group homomorphism f

• F Set
$$\longrightarrow$$
 Grp
 $X \longmapsto F(X) = \text{the free group generated by the set } X$
 $[X \stackrel{f}{\longrightarrow} Y] \longmapsto [F(f) F(X) \longrightarrow F(Y)] = \text{the group homomorphism}$
 $x_1 x_2 \longmapsto f(x_1) f(x_2)$
induced by f









• $P \quad Set \longrightarrow Set$

Examples of functors
•
$$\mathcal{H}_{h}$$
 Top $\longrightarrow Ab$
 $\begin{array}{c} & \text{catigory of abelian groups} \\ & \text{with group homomorphisms} \end{array}$
 $\begin{array}{c} & X & \longmapsto & \mathcal{H}_{h}(X) = n^{\text{th}} \text{ homology group} \\ & [X \xrightarrow{f} & Y] & \longmapsto & [\mathcal{H}_{h}(f) & \mathcal{H}_{h}(X) \longrightarrow & \mathcal{H}_{n}(Y)] = \text{induced morphism} \\ & \text{in homology} \end{array}$

• $P \xrightarrow{} Set \longrightarrow Set$ $X \xrightarrow{} P(X) = set of subsets of X$

Examples of functors
•
$$\mathcal{H}_{n}$$
 Top $\longrightarrow \mathcal{A}_{b}$ (catigory of abelian groups
 $with group homomorphisms$
 $X \longmapsto \mathcal{H}_{n}(X) = n^{th} homology group$
 $[X \xrightarrow{f} Y] \longmapsto [\mathcal{H}_{n}(f) + \mathcal{H}_{n}(X) \longrightarrow \mathcal{H}_{n}(Y)] = induced morphism
in homology$

• P Set \longrightarrow Set

 $\chi \mapsto P(\chi) = \text{set of subsets of } \chi$ $[\chi \xrightarrow{f} \chi] \longmapsto [P(f) P(\chi) \longrightarrow P(\chi)] = induced function between the power sets$

Examples of functors
•
$$H_n$$
 Top $\longrightarrow Ab$
 $X \longmapsto H_n(X) = n^{th} homology group$
 $[X \xrightarrow{f} Y] \longmapsto [H_n(f) + H_n(X) \longrightarrow H_n(Y)] = induced morphism in homology$

• $P \text{ Set} \longrightarrow \text{Set}$ $\chi \longmapsto P(\chi) = \text{set of subsets of } \chi$ $[\chi \stackrel{f}{\longrightarrow} \chi] \longmapsto [P(f) P(\chi) \longrightarrow P(\chi)] = induced function between the power sets$ $\chi_1 \subseteq \chi \mapsto \{f(\chi)\} \subseteq \chi$ $\chi_1 \subseteq \chi_1$

Let G, H be groups

Let G, H be groups • $F \subseteq \longrightarrow H$ $ob_{j}(\subseteq) \longrightarrow ob_{j}(H)$ $\subseteq (*,*) \longrightarrow H(*,*)$

Let G, H be groups • $F \subseteq \longrightarrow H$ $ob_{j}(\subseteq) \longrightarrow ob_{j}(H) * \longmapsto *$ $\subseteq (*,*) \longrightarrow H(*,*) \quad g \longmapsto F(g) \quad st \begin{cases} F(1_{G}) = 1_{F(*)} \\ F(gg') = F(g) F(g') \end{cases}$

Let G, H be groups • F $\underline{G} \longrightarrow \underline{H}$ $obj(\underline{G}) \longrightarrow obj(\underline{H}) * \longmapsto *$ $\underline{G} (*,*) \longrightarrow \underline{H} (*,*) \quad g \longmapsto F(g) \quad st \begin{cases} F(1_{G}) = 1_{F(*)} \\ F(gg') = F(g) F(g') \end{cases}$ $\underline{H} \quad H \quad group homomorphism!$

Let G, H be groups • $F \quad G \longrightarrow H$ $ob_1(\underline{G}) \longrightarrow ob_1(\underline{H}) * \longmapsto *$ ו |-| it is nothing but a group homomorphism! • $F \quad G \longrightarrow Set$ $ob_{I}(\underline{G}) \longrightarrow ob_{I}(\underline{Set})$ $(f(*,*) \longrightarrow Set(F(*), F(*))$

Let G, H be groups • F $G \longrightarrow H$ $ob_{I}(\underline{G}) \longrightarrow ob_{I}(\underline{H}) * \longmapsto *$ $\begin{array}{ccc} \underline{G} & (*,*) & \longrightarrow & \underline{H} & (*,*) \\ & \underline{G} & & \underline{H} & & \\ & & \underline{H} & & \\ & & & \underline{H} & & \\ \end{array} \right) \xrightarrow{F(g)} & \text{st} \begin{cases} F(1_G) = 1_{F(*)} \\ F(gg') = F(g) F(g') \\ F(gg') = F(g) F(g') \end{cases}$ it is nothing but a group homomorphism! • $F \quad \underline{G} \quad \longrightarrow \text{Set}$ $ob_{I}(\underline{G}) \longrightarrow ob_{I}(\underline{Set}) * \longmapsto F(*)$ $G = G(*,*) \longrightarrow Set(F(*), F(*)) \xrightarrow{f(*)} g \mapsto F(g) \quad st \begin{cases} F(\gamma_G) = 1_{F(*)} \\ F(\gamma_G) = F(g) \\ F(\gamma_G) = F(\gamma_G) \\ F(\gamma$

Let G, H be groups • $F \quad G \longrightarrow H$ $ob_{I}(\underline{G}) \longrightarrow ob_{I}(\underline{H}) * \longmapsto *$ $\begin{array}{c} G (\underline{f}, \underline{f}) & \xrightarrow{f} G (\underline{f}, \underline{f}) \\ G (\underline{f}, \underline{f}) & \xrightarrow{f} H (\underline{f}, \underline{f}) \\ \parallel & \underbrace{f} H$ ا ج וי 14 it is nothing but a group homomorphism! • $F G \longrightarrow Set$ $ob_1(\underline{G}) \longrightarrow ob_1(\operatorname{Set}) * \longmapsto F(*)$ $G = (f(*,*)) \longrightarrow Set(F(*), F(*)) \xrightarrow{f(*)} g \longrightarrow F(g) \quad st \quad \begin{cases} F(\gamma_{G}) = 1_{F(*)} \\ F(\gamma_{G}) = F(\gamma_{G}) \xrightarrow{F(g)} \\ F(\gamma_{G}) = F(\gamma_{G}) \xrightarrow{F(\gamma_{G})} \\ F(\gamma_{G}) \xrightarrow{F(\gamma_{G})} \\ F(\gamma_{G}) \xrightarrow{F(\gamma_{G})}$ it is nothing but a left G-set

Hom-functors Homes are sets let A be a locally small catigory We define the functor $h^A A \rightarrow Set$ as follows $ob_{1}(A) \longrightarrow ob_{1}(Set)$ $A(B,C) \longrightarrow Set(A(A,B), A(A,C))$

Hom-functors Homes are sets Let A be a locally small category We define the functor $h^A A \rightarrow Set$ as follows $ob_{I}(A) \longrightarrow ob_{I}(Set)$ $B \longmapsto h^{A}(B) = A(A,B)$ $A(B,C) \longrightarrow Set(A(A,B), A(A,C))$

Hom-functors Homes are sets let A be a locally small category We define the functor h A -> Set as follows $ob_{I}(A) \longrightarrow ob_{I}(Set)$ $B \longmapsto h^{A}(B) = A(A,B)$ $A(B,C) \longrightarrow Set(A(A,B), A(A,C))$ $[f B \rightarrow C] \longmapsto h^{A}(f) \not A(A,B) \longrightarrow A(A,C)$

Hom-functors Homes are sets Let A be a locally small category We define the functor h A -> Set as follows $ob_{1}(A) \longrightarrow ob_{1}(Set)$ $B \longmapsto h^{A}(B) = A(A,B)$ $A(B,C) \longrightarrow Set(A(A,B), A(A,C))$ $[f B \rightarrow C] \longmapsto h^{A}(f) A (A,B) \longrightarrow A (A,C)$ $[q A \rightarrow B] \longmapsto [fg A \rightarrow C]$

Hom-functors Homes are sets let A be a locally small category We define the functor h A -> Set as follows $ob_{1}(A) \longrightarrow ob_{1}(Set)$ $B \longmapsto h^{A}(B) = A(A,B)$ $A(B,C) \longrightarrow Set(A(A,B), A(A,C))$ $[f B \rightarrow C] \longmapsto h^{A}(f) A (A,B) \longrightarrow A (A,C)$ $[q A \rightarrow B] \longmapsto [fg A \rightarrow C]$

hA tells us what the object A sees from the catigory A

Hom-functors Homes are sets Let A be a locally small category We define the functor $h_{A} \xrightarrow{P} Set$ as follows $ob_1(A^{\text{T}}) \longrightarrow ob_1(Set)$ $B \mapsto h_{A}(B) = A(B, A)$ $A^{\circ P}(B,C) = A(C,B) \longrightarrow Set(A(B,A), A(C,A))$ $[f (\rightarrow B] \longmapsto h_{A} (f) \land (B,A) \longrightarrow \land (C,A)$ $[q B \rightarrow A] \longmapsto [qf C \rightarrow A]$

Hom-functors Homes are sets let A be a locally small category We define the functor $h_{A} \xrightarrow{P} Set$ as follows $ob_1(A^{\text{T}}) \longrightarrow ob_1(Set)$ $B \longmapsto h_{A}(B) = A(B, A)$ $A^{\circ P}(B,C) = A(C,B) \longrightarrow Set(A(B,A), A(C,A))$ $[f (\rightarrow B] \longmapsto h_{A}(f) \land (B,A) \longrightarrow A(C,A)$ $[q B \rightarrow A] \longmapsto [qf C \rightarrow A]$ h_A tells us what the category A sees of the object A

- A functor $F A \rightarrow \mathcal{B}$ is called fully faithful if for every pair $A, B \in ob_j(A)$ the functions $A(A, B) \xrightarrow{F} \mathcal{B}(F(A), F(B))$
 - are byective
- Example

• A functor $F A \rightarrow \mathcal{B}$ is called fully faithful if for every pair $A, B \in ob_j(A)$ the functions $A(A, B) \xrightarrow{F} \mathcal{B}(F(A), F(B))$

are byective

- Example
- $Ab \xrightarrow{L} Grp$ $G \longmapsto \iota(G) = G$ $\left[G \xrightarrow{f} H\right] \longmapsto \left[\iota(f) = f \quad G \longrightarrow H\right]$
- (morphisms in Ab are the homomorphisms of groups)

Relating functors natural transformations

Let F, G be two locally small categories Let F, G be two functors $A \longrightarrow B$

Relating functors natural transformations

- Let F, G be two locally small categories Let F, G be two functors $A \longrightarrow B$
- A natural transformation & F⇒G is given by a morphism $d_A F(A) \longrightarrow G(A)$ in \mathcal{Z} such that for all f A -> A' in A the following diagram in B commutes $F(A) \longrightarrow G(A)$

Let F, G, H be functors $A \longrightarrow B$

- Let F, G, H be functors $A \longrightarrow B$
- We can compose natural transformations

Let A, B be two locally small categories Let F, G, H be functors $A \longrightarrow B$ • We can compose natural transformations $d F \Rightarrow G$, $\beta G \Rightarrow H \sim p \beta d F \Rightarrow H$ given by $(\beta d)_A = (\beta_A d_A F(A) \rightarrow H(A))$

Categories of functors

- Let A, B be two locally small categories Let F, G, H be functors $A \longrightarrow B$ • We can compose natural transformations $d F \Rightarrow G$, $\beta G \Rightarrow H \longrightarrow \beta d F \Rightarrow H$ given by $(\beta d)_A = (\beta_A d_A F(A) \rightarrow H(A))$
- There is an identity natural transformation

Categories of functors

- Let A, B be two locally small categories Let F, G, H be functors $A \longrightarrow B$ • We can compose natural transformations $d F \Rightarrow G$, $\beta G \Rightarrow H \longrightarrow \beta d F \Rightarrow H$ given by $(\beta d)_A = \beta_A d_A F(A) \rightarrow H(A)$
- There is an identity natural transformation $1_F F \Rightarrow F$ given by $(1_F)_A = 1_{F(A)}$

Categories of functors

- Let A, B be two locally small categories Let F, G, H be functors $A \longrightarrow B$ • We can compose natural transformations $d F \Rightarrow G$, $\beta G \Rightarrow H \longrightarrow \beta d F \Rightarrow H$ given by $(\beta d)_A = \beta_A d_A F(A) \rightarrow H(A)$
- There is an identity natural transformation

$$1_{F} F \Rightarrow F$$
 given by $(1_{F})_{A} = 1_{F(A)}$

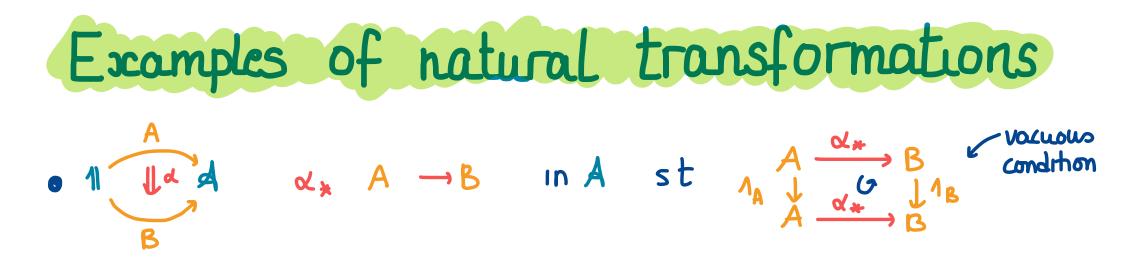
• Therefore, we can form a category of functors Fun(A,B) with objects the functors and morphisms the natural transformations

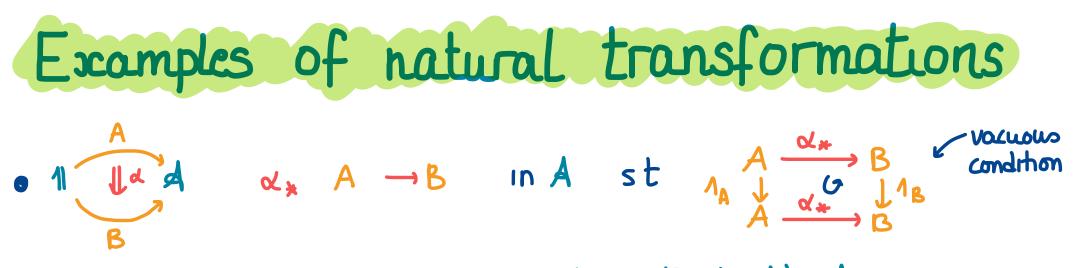
Examples of natural transformations • $G \xrightarrow{\times} Set$ $Y \xrightarrow{\times} Set$ $Y \xrightarrow$ Examples of natural transformations • $\underbrace{G}_{y} \xrightarrow{\times} \underbrace{Set}_{y}$ $d_{*} \times \xrightarrow{\longrightarrow} y$ in Set st for all $g \in \underline{G}(*,*)$ $g \downarrow \underbrace{G}_{y} \xrightarrow{\times} \underbrace{G}_{y}$

in other words, $d_{*}(gx) = gd_{*}(x) \quad \forall x \in X \quad \forall g \in G$

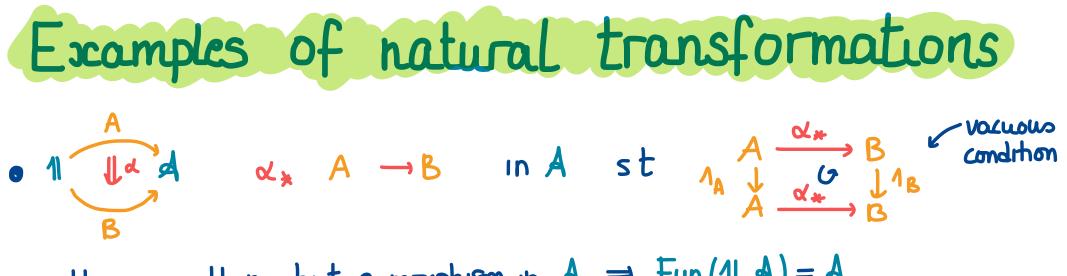
Examples of natural transformations • <u>G</u> <u>J</u> <u>k</u> <u>Set</u> <u>y</u> in other words, $\alpha_{*}(qx) = q \alpha_{*}(x) \quad \forall x \in X \quad \forall q \in G$ ~p this is nothing but a G-equivariant map of left G-sets!

Examples of natural transformations in other words, $a_{*}(qx) = q a_{*}(x) \quad \forall x \in X \quad \forall q \in G$ ~p this is nothing but a G-equivariant map of left G-sets! we have that Fun (G, set) = category of left G-sets + equiv maps

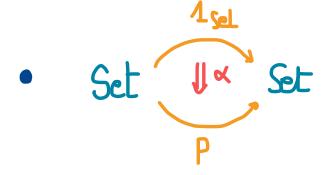




~pthis is nothing but a morphism in $A \Rightarrow Fun(1, A) = A$



~ p this is nothing but a morphism in $A \Rightarrow Fun(11, A) = A$



• 1
$$d_A$$
 d_* $A \rightarrow B$ in A st $A \xrightarrow{d_*} B$ condition
 $A \xrightarrow{d_*} B$ condition

~pthis is nothing but a morphism in $A \Rightarrow Fun(1, A) = A$

• Set
$$f(X) \rightarrow P(X)$$
 in Set
 p $x \mapsto \{x\}$

Λ

• 1 \mathbb{I}_{A} \mathbb{A}_{*} $\mathbb{A} \to \mathbb{B}$ in \mathbb{A} st $\mathcal{A}_{A} \xrightarrow{\mathbb{A}_{*}} \mathbb{B}$ condition \mathbb{B}

~ p this is nothing but a morphism in $A \Rightarrow Fun(11, A) = A$

• Set
$$for all f X \to Y$$
 in Set $we have X \xrightarrow{d_X} P(X)$,
 $for all f X \to Y$ in Set $we have X \xrightarrow{d_X} P(X)$,
 $f \downarrow G \downarrow P(f)$,
 $\gamma \xrightarrow{d_Y} P(Y)$

• 1
$$\mathbb{I}_{A} \xrightarrow{\alpha_{*}} B$$
 in A st $A \xrightarrow{\alpha_{*}} B$ condition
B

~ p this is nothing but a morphism in $A \Rightarrow Fun(11, A) = A$

Let A, & be categories and consider the functor category Fun(A, 3)

Let A, & be categories and consider the functor category Fun(A, 3) • A natural isomorphism is an isomorphism in Fun(A, 3)

Let A, & be categories and consider the functor category Fun(A, B)
 A natural comorphism is an isomorphism in Fun(A, B)
 \$\alphi\$ F ⇒ G, \$\alphi\$^{-1}G ⇒ F st \$\alphi\$\$\alphi\$^{-1}=1G, \$\alphi\$^{-1}\$\$\alpha\$ = 1F

Let A, & be categories and consider the functor category Fun(A, 3)
A natural isomorphism is an isomorphism in Fun(A, 3)
& F ⇒ G , a⁻¹G ⇒ F st aa⁻¹= 1_G, a⁻¹a = 1_F
Two functors F, G A→& are isomorphic if they are connected by a natural isomorphism F = G

Let A, & be categories and consider the functor category Fun(A, &)
A natural isomorphism is an isomorphism in Fun(A, &)
& F ⇒ G , a⁻¹G ⇒ F st aa⁻¹= 1_G, a⁻¹a = 1_F
Two functors F, G A→& are isomorphic if they are connected by
a natural isomorphism F = G

Let A, & be categories and consider the functor category Fun(A, &)
A natural isomorphism is an isomorphism in Fun(A, &)
& F ⇒ G , a⁻¹G ⇒ F st & da⁻¹= 1_G, a⁻¹a = 1_F
Two functors F, G A→& are isomorphic if they are connected by a natural isomorphism F ⇒ G

- A natural transformation $\alpha F \Rightarrow G$ is a natural isomorphism if and only if $\alpha_A F(A) \rightarrow G(A)$ is an isomorphism in \mathcal{S} for all A
- Example $1_{\text{fors}_k} \stackrel{\text{ev}}{\longrightarrow} (-)^{**}$ given, for all $V \in ob_j(fors_k)$, by

Let A, & be categories and consider the functor category Fun(A, &)
A natural isomorphism is an isomorphism in Fun(A, &)
& F ⇒ G , a⁻¹G ⇒ F st aa⁻¹= 1_G, a⁻¹a = 1_F
Two functors F, G A→& are isomorphic if they are connected by
a natural isomorphism F = G

• Example
$$1_{\text{fdVS}_k} \stackrel{\text{ev}}{\longrightarrow} (-)^{**}$$
 given, for all $V \in ob_j(\text{fdVS}_k)$, by
 $\bigvee \stackrel{\text{ev}}{\longrightarrow} Hom(V^*, k) = Hom(Hom(V, k), k)$

Let A, & be categories and consider the functor category Fun(A, &)
A natural isomorphism is an isomorphism in Fun(A, &)
& F ⇒ G , a⁻¹G ⇒ F st aa⁻¹= 1_G , a⁻¹a = 1_F
Two functors F, G A→& are isomorphic if they are connected by
a natural isomorphism F = G

Let A, & be categories and consider the functor category Fun(A, &)
A natural isomorphism is an isomorphism in Fun(A, &)
& F ⇒ G , a⁻¹G ⇒ F st aa⁻¹= 1_G, a⁻¹a = 1_F
Two functors F, G A→& are isomorphic if they are connected by
a natural isomorphism F = G

• Example
$$1_{\text{folvs}_k} \stackrel{\text{ev}}{\longrightarrow} (-)^{**}$$
 given, for all $\forall eob_j(\text{folvs}_k)$, by
 $\bigvee \stackrel{\text{ev}^{\vee}}{\cong} \text{Hom}(\forall^*, k) = \text{Hom}(\text{Hom}(\forall, k), k)$
 $\downarrow \downarrow \longrightarrow [\emptyset \lor \downarrow \downarrow \to \emptyset(\forall)$

« A category is a world of objects, all looking at one another Each sees the world from a different viewpoint » Tom Leinster

« A category is a world of objects, all looking at one another Each sees the world from a different viewpoint » Tom Leinster

• The information of what an object A of a category A sees of A is codified by the functor $h^A \xrightarrow{A} \xrightarrow{A} \operatorname{set}$

« A category is a world of objects, all looking at one another Each sees the world from a different viewpoint » Tom Leinster

- The information of what an object A of a category Asees of A is codified by the functor $h^A A \longrightarrow Set$
- The information of what the category A sees of one of its objects A is codified by the functor $h_A A^{op} \longrightarrow Set$

« A category is a world of objects, all looking at one another Each sees the world from a different viewpoint » Tom Leinster

- The information of what an object A of a category Asees of A is codified by the functor $h^A A \longrightarrow Set$
- The information of what the category A sees of one of its objects A is codified by the functor h A^{op} ---- Set
- We say that a functor $F A \rightarrow Set$ (resp $F A^{\circ P} \rightarrow Set$) is representable if it is naturally isomorphic to a functor h^A (resp h_A) for some $A \in obj(A)$

Let A be a locally small catigory Then, we have that $Fun(A^{op},set)(h_A,F) \cong F(A)$ raturally in $A \in obg(A)$ and $F \in Fun(A^{op},set)$

Let A be a locally small catigory Then, we have that $Fun(A^{op},set)(h_A,F) \cong F(A)$ raturally in $A \in obj(A)$ and $F \in Fun(A^{op},set)$

Let A be a locally small catigory Then, we have that $Fun(A^{op}, set) (h_A, F) \cong F(A)$ raturally in $A \in obj(A)$ and $F \in Fun(A^{op}, set)$

Let A be a locally small catigory Then, we have that $Fun(A^{op}, set) (h_A, F) \cong F(A)$ raturally in $A \in obj(A)$ and $F \in Fun(A^{op}, set)$

Sketch of the proof $Fun(A^{\circ P}, set)(h_A, F) \longrightarrow F(A)$

 $F(A) \longrightarrow Fun(A^{\circ P}, Set)(h_A, F)$

Let
$$A$$
 be a locally small catigory Then, we have that
 $Fun(A^{op}, set) (h_A, F) \cong F(A)$
raturally in $A \in obj(A)$ and $F \in Fun(A^{op}, set)$

Sketch of the proof

$$Fun(A^{\circ P}, Set)(h_A, F) \longrightarrow F(A)$$

 $\alpha h_A \Longrightarrow F \longrightarrow$
 λ_{Δ}
 $h_A(A) = A(A, A) \xrightarrow{\alpha_A} F(A)$

$$F(A) \longrightarrow Fun(A^{\circ P}, Set)(h_A, F)$$

Let
$$A$$
 be a locally small catigory Then, we have that
 $Fun(A^{op}, set) (h_A, F) \cong F(A)$
naturally in $A \in obj(A)$ and $F \in Fun(A^{op}, set)$

Sketch of the proof

$$Fun(A^{\circ P}, Set)(h_A, F) \longrightarrow F(A)$$

 $a h_A \Longrightarrow F \longrightarrow$
 $a h_A (A) = A(A, A) \xrightarrow{d_A} F(A)$
 $u = A(A, A) \xrightarrow{d_A} F(A)$
 $u = A(A, A) \xrightarrow{d_A} F(A)$

$$F(A) \longrightarrow Fun(A^{\circ P}, Set)(h_A, F)$$

Let
$$A$$
 be a locally small catigory Then, we have that
 $Fun(A^{op}, set) (h_A, F) \cong F(A)$
naturally in $A \in obj(A)$ and $F \in Fun(A^{op}, set)$

Sketch of the proof $Fun(A^{op}, Set)(h_A, F) \longrightarrow F(A)$ $a h_A \Longrightarrow F \longmapsto a (A_A)$ $a h_A \Longrightarrow F \longmapsto a (A_A)$ $h_A(A) = A(A_AA) \xrightarrow{d_A} F(A)$ $u = A(A_AA) \xrightarrow{d_A} F(A)$ $u = A(A_AA) \xrightarrow{d_A} F(A)$

 $F(A) \longrightarrow Fun(A^{\circ P}, Set)(h_A, F)$

Let
$$A$$
 be a locally small catigory Then, we have that
 $Fun(A^{op}, set) (h_A, F) \cong F(A)$
naturally in $A \in obj(A)$ and $F \in Fun(A^{op}, set)$

Sketch of the proof $Fun(A^{op}, Set)(h_A, F) \longrightarrow F(A)$ $a h_A \Longrightarrow F \longmapsto a_A(A, A)$ $a h_A \Rightarrow F \longmapsto a_A(A, A)$ $h_A(A) = A(A, A) \xrightarrow{d_A} F(A)$ u $A \longmapsto a_A(A, A)$

$$F(A) \longrightarrow Fun(A^{\circ P}, Set)(h_A, F)$$

$$x \longmapsto a h_A \Longrightarrow F$$

Let
$$A$$
 be a locally small catigory Then, we have that
 $Fun(A^{op}, set) (h_A, F) \cong F(A)$
naturally in $A \in obj(A)$ and $F \in Fun(A^{op}, set)$

$$F(A) \longrightarrow Fun(A^{\circ P}, Set)(h_A, F)$$

$$x \longmapsto a h_A \Longrightarrow F$$

$$a_B A(B, A) \longrightarrow F(B)$$

$$\mapsto$$

Let
$$A$$
 be a locally small catigory Then, we have that
 $Fun(A^{op}, set) (h_A, F) \cong F(A)$
naturally in $A \in obj(A)$ and $F \in Fun(A^{op}, set)$

Sketch of the proof Fun $(A^{\circ P}, \text{Set})(h_A, F) \longrightarrow F(A)$ $a h_A \Longrightarrow F \longmapsto a_A(\Lambda_A)$ $b_A(A) = A(A, A) \xrightarrow{a_A} F(A)$ $\psi = A(A, A) \xrightarrow{a_A} F(A)$

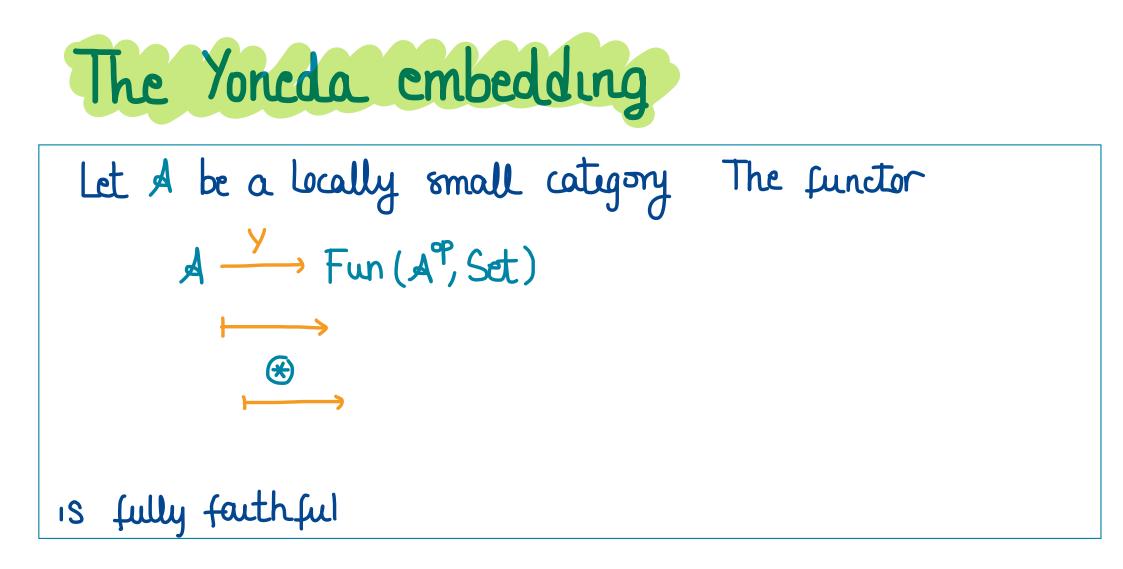
 $F(A) \longrightarrow Fun(A^{\circ P}, Set)(h_A, F)$ $x \longmapsto a h_A \Longrightarrow F$ $a_B A(B, A) \longrightarrow F(B)$ $f B \longrightarrow A \longmapsto$

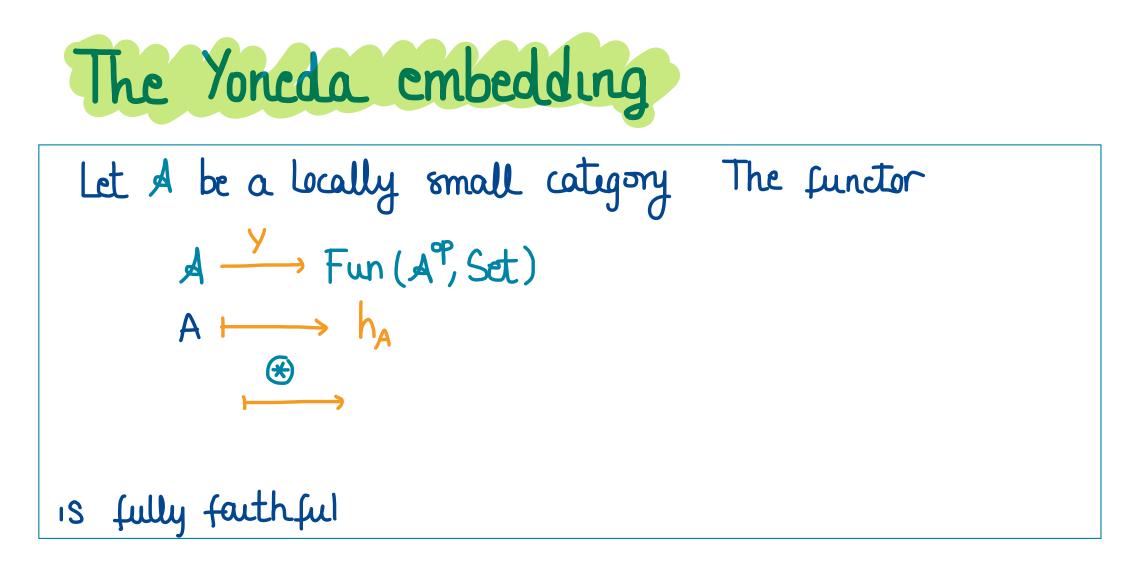
Let
$$A$$
 be a locally small catigory Then, we have that
 $Fun(A^{op}, set) (h_A, F) \cong F(A)$
naturally in $A \in obj(A)$ and $F \in Fun(A^{op}, set)$

Sketch of the proof $Fun(A^{op}, Set)(h_{A}, F) \longrightarrow F(A)$ $a h_{A} \Longrightarrow F \longmapsto a_{A}(A_{A})$ $a h_{A} \Longrightarrow F \longmapsto a_{A}(A_{A})$ $a h_{A} \Longrightarrow F \longrightarrow a_{A}(A_{A})$ $b_{A}(A) = A(A,A) \xrightarrow{d_{A}} F(A)$ $c_{A}(A) = A(A,A)$

Let
$$A$$
 be a locally small catigory Then, we have that
 $Fun(A^{op}, set) (h_A, F) \cong F(A)$
naturally in $A \in obj(A)$ and $F \in Fun(A^{op}, set)$

 $F(A) \longrightarrow Fun(A^{\circ p}, Set)(h_A, F)$ $x \longmapsto a h_A \Longrightarrow F$ $a_B A(B, A) \longrightarrow F(B)$ $f B \longrightarrow A \longmapsto F(f)(x)$ $\sum_{i=1}^{n} F(A) \xrightarrow{f} F(B)$





Let A be a locally small category The functor

$$A \xrightarrow{Y} Fun(A^{\text{P}}, \text{Set})$$

 $A \longmapsto h_{A}$
 $A \xrightarrow{f} B \xrightarrow{\circledast} h_{f} h_{A} \Rightarrow h_{B}$ given, for all $C \in obj(A)$, by
 $(h_{f})_{c} A[C,A) \xrightarrow{f_{0}-} A(C,B)$
IS fully faithful

Let
$$A$$
 be a locally small category. The functor
 $A \xrightarrow{\vee} Fun(A^{\circ P}, Set)$
 $A \longmapsto h_{A}$
 $A \xrightarrow{f} B \xrightarrow{\circledast} h_{f} h_{A} \Rightarrow h_{B}$ given, for all $Ceoby(A)$, by
 $(h_{f})_{c} A(C,A) \xrightarrow{f \circ -} A(C,B) [g(\rightarrow A] \mapsto [fg(c \rightarrow B])]$
is fully faithful

The Yoncda embedding
Let A be a locally small catigory The functor

$$A \xrightarrow{\vee} Fun(A^{\circ P}, Set)$$

 $A \longmapsto h_{A}$
 $A \xrightarrow{f}_{B} \xrightarrow{\circledast} h_{f} h_{A} \Rightarrow h_{B}$ given, for all $C \in obj(A)$, by
 $(h_{f})_{c} A(C,A) \xrightarrow{f^{\circ -}} A(C,B) [g (\rightarrow A] \mapsto [fg (\rightarrow B])]$
Is fully faithful
Sketch of the prof

Yoneda Lemma gives us a bijection $F(A) \longrightarrow Fun(A^{\circ P}, set)(h_A, F)$

The Yoncda embedding
Let A be a locally small catigory The functor

$$A \xrightarrow{Y} Fun(A^{\circ}, Set)$$

 $A \longmapsto h_{A}$
 $A^{f}, B \xrightarrow{\circledast} h_{f} h_{A} \Rightarrow h_{B}$ given, for all $Ceobj(A)$, by
 $(h_{f})_{c} A(C, A) \xrightarrow{f \circ -} A(C, B) [g (\rightarrow A] \mapsto [fg (\rightarrow B])]$
is fully faithful
Sketch of the proof
Yoneda Lemma gives up a bijection $F(A) \longrightarrow Fun(A^{\circ}, Set)(h_{A}, F)$

Take F=hB ⇒

The Yoncda embedding
Let A be a locally small catigory The functor

$$A \xrightarrow{\vee} Fun (A^{ep}, Set)$$

 $A \longmapsto h_{A}$
 $A \xrightarrow{f}_{B} \xrightarrow{\circledast} h_{f} h_{A} \Rightarrow h_{B}$ given, for all $C \in obj(A)$, by
 $(h_{f})_{c} A(C, A) \xrightarrow{f_{e^{-}}} A(C, B) [g(\rightarrow A] \mapsto [fg(\rightarrow B])]$
is fully faithful
Sketch of the proof

Yoneda lemma gives us a bijection $F(A) \rightarrow Fun(A^{\circ P}, set)(h_A, F)$ Take $F = h_B \Rightarrow h_B(A) = A(A,B) \rightarrow Fun(A^{\circ P}, set)(h_A, h_B)$ which is precisely the function R

An object A in a catigory A is fully determined by what the catigory sees of it that is,

An object A in a catigory A is fully determined by what the catigory sees of it that is, it is fully determined by h_A

An object A in a catigory A is fully determined by what the catigory sees of it that is, it is fully determined by h_A . Indeed, if A sees two objects A and B as indistinguishible that is,

An object A in a category A is fully determined by what the category sees of it that is, it is fully determined by hA Indeed, if A sees two objects A and B as indistinguishible that is, h_A≅h_B

An object A in a catigory A is fully determined by what the category sees of it that is, it is fully determined by hA Indeed, if A sees two objects A and B as indistinguishible that is, h_A ≅ h_B then, A and B are the «same» in A that is,

An object A in a catigory A is fully determined by what the category sees of it that is, it is fully determined by hA Indeed, if A sees two objects A and B as indistinguishible that is, $h_A \cong h_B$ then, A and B are the «same» in A that is, $A \cong B$

But there are certain catigories were less is required

But there are certain catigories were less is required $X \in ob_{j}(Set)$ is fully determined by Set(1*1,X) $1*1 \xrightarrow{f} X = x \in X$

But there are certain catigories were less is required $X \in ob_{j}(Set)$ is fully determined by Set(1*1,X) $1*1 \xrightarrow{f} X = x \in X$

Sets are determined by their points!

Module spaces

• A module space classifying certain objects (the real numbers, triangles, vector bundles on a manifold) is a space (topological space, manifold, abelian variety, scheme, stack) in which each point represents one object, two non-isomorphic objects are represented by different points and objects that are «similar» are «closeby» in this Space

Module spaces

- A module space classifying certain objects (the real numbers, triangles, vector bundles on a manifold) is a space (topological space, manifold, abelian variety, scheme, stack) in which each point represents one object, two non-isomorphic objects are represented by different points and objects that are «similar» are «closeby» in this Sparce
 - Example the real line IR is the moduli space classifying the real numbers

Problem We want to study a module space M classifying
 (ertain objects what does it look like)

• Problem We want to study a module space M classifying (artain objects what does it look like? $1*1 \longrightarrow M$ sees the points of M

Problem We want to study a module space M classifying (artain objects what does it look like)
 i+i → M sees the points of M
 [0,1] → M sees the paths of M

Problem We want to study a module space M classifying (artain objects what does it look like)
i+i → M sees the points of M
[0,1] → M sees the paths of M
R → M sees the curves of M

Problem We want to study a module space M classifying (artain objects what does it look like)
 i+r → M sees the points of M
 [0,1] → M sees the paths of M
 R → M sees the curves of M

Problem We want to study a module space M classifying (artain objects what does it look like)
 i+r → M sees the points of M
 [0,1] → M sees the paths of M
 R → M sees the curves of M

what Yoneda lemma is telling us is that M is fully determined by what the other spaces see of M

we want to build an M from what all the spaces in our category Spac see eff Spac^{op} → Set X → what X sees of M

More general spaces

we want to build an M from what all the spaces in our category Spac see eff spac^{op} → Set X → what X sees of M if ell is representable end if h_M we obtain our space

we want to build an M from what all the spaces in our category Spac see $\mathcal{C} \mathsf{Spac}^{\mathsf{OP}} \longrightarrow \mathsf{Set}$ $X \longrightarrow$ what X sees of M if ell is representable $\mathcal{CM} \cong h_{M}$ we obtain our space what if not?

we want to build an M from what all the spaces in our category Spac see $\mathcal{C}\mathcal{H}$ Spac^{op} \longrightarrow Set $X \longrightarrow$ what X sees of M if ell is representable $\mathcal{C} \overset{\mathcal{H}}{\Rightarrow} h_{M}$ we obtain our space what if not? Just consider of as a space itself!

we want to build an M from what all the spaces in our category Spac see $\mathcal{C} \mathsf{Spac}^{\mathsf{OP}} \longrightarrow \mathsf{Set}$ $X \longrightarrow$ what X sees of M if ell is representable $\mathcal{M} \xrightarrow{\cong} h_{M}$ we obtain our space Just consider of as a space itself! what if not? We do not see it, but we know how it is perceived by different spaces, and this is often enough to do seometry!

BOOKS

[Leurster, T] Basic Category Theory [Maclane, S] Categories for the Working Mathematician [Richl, E] Category Theory in Context BLOG POST [Ward, M] The Brilliance of the Yoneda Lemma