THE YONEDA LEMMA
or why we know what a black hole is without being able to see it

BSSM 2022
29/08/2022
Julia Ramos González
UCLouvain

Understanding the inaccessible...

Categories, our mathematical wntexts
What is a CATEGORY?

Categories, our mathematical conte xt
What is a CATEGORY?
$\{$ a collection of objects A, B, C, \ldots

Categories, our mathematical conte xt
What is a CATEGORY?
$\left\{\begin{array}{l}\text { a collection of objects } A, B, C, \ldots \\ \text { a collection of morphisms } f, g, h, \ldots\end{array}\right.$ such that:

Categories, our mathematical contexts
What is a CATEGORY?
$\left\{\begin{array}{l}\text { a collection of objects } A, B, C, \ldots \\ \text { a collection of morphisms } f, g, h, \ldots\end{array}\right.$ such that:

- each morphism has a specified domain and codomain

$$
f: A \rightarrow B
$$

Categories, our mathematical contexts
What is a CATEGORY?
$\left\{\begin{array}{l}\text { a collection of objects } A, B, C, \ldots \\ \text { a collection of morphisms } f, g, h, \ldots\end{array}\right.$ such that:

- each morphism has a specified domain and codomain

$$
f: A \rightarrow B
$$

- for each object we have an identity morphism

$$
1_{A}: A \longrightarrow A
$$

Categories, our mathematical contexts
What is a CATEGORY?
$\left\{\begin{array}{l}\text { a collection of objects } A, B, C, \ldots \\ \text { a collection of morphisms } f, g, h, \ldots\end{array}\right.$ such that:

- each morphism has a specified domain and codomain

$$
f: A \rightarrow B
$$

- for each object we have an identity morphism

$$
1_{A}: A \longrightarrow A
$$

- for each pair $f: A \rightarrow B, g: B \longrightarrow C$, we have a composite

$$
g f: A \longrightarrow C
$$

subject to the following axioms: $\{$

Categories, our mathematical contexts
What is a CATEGORY?
$\left\{\begin{array}{l}\text { a collection of objects } A, B, C, \ldots \\ \text { a collection of morphisms } f, g, h, \ldots\end{array}\right.$ such that:

- each morphism has a specified domain and codomain

$$
f: A \rightarrow B
$$

- for each object we have an identity morphism

$$
1_{A}: A \longrightarrow A
$$

- for each pair $f: A \rightarrow B, g: B \longrightarrow C$, we have a composite subject to the following axioms: $\left\{\begin{array}{r}g f: A \longrightarrow C \\ \text { given } f: A \rightarrow B, \text { we have } \\ f 1_{A}=f=1_{B} f\end{array}\right.$

Categories, our mathematical contexts
What is a CATEGORY?
$\left\{\begin{array}{l}\text { a collection of objects } A, B, C, \ldots \\ \text { a collection of morphisms } f, g, h, \ldots\end{array}\right.$ Such that:

- each morphism has a specified domain and codomain

$$
f: A \rightarrow B
$$

- for each object we have an identity morphism

$$
1_{A}: A \longrightarrow A
$$

- for each pair $f: A \rightarrow B, g: B \longrightarrow C$, we have a composite

$$
\text { subject to the following axioms: }\left\{\begin{aligned}
& \text { given } f: A \rightarrow B, \text { we have } \\
& f 1_{A}=f=1, B f \\
& \text { given } f: A \rightarrow B, g: B \rightarrow C, h: C \rightarrow D \\
& h(g f)=(h g) f
\end{aligned}\right.
$$

Examples of categories

- Set: \rightarrow Objects: sets
\rightarrow Morphisms: $\operatorname{Set}(A, B)=$ functions from A to B
\rightarrow composition of functions \& identity functions

Examples of categories

- Set: \rightarrow Objects: sets
\rightarrow Morphisms: $\operatorname{Set}(A, B)=$ functions from A to B
\rightarrow composition of functions \& identity functions
- Gre: \rightarrow Objects: groups
\rightarrow Morphisms: $\operatorname{Grp}(G, H)=$ group homomorphisms $G \rightarrow H$
\rightarrow Composition of homomorphisms \& identity

Examples of categories

- Set: \rightarrow Objects: sets
\rightarrow Morphisms: $\operatorname{Set}(A, B)=$ functions from A to B
\rightarrow composition of functions \& identity functions
- Gre: \rightarrow Objects: groups
\rightarrow Morphisms: $\operatorname{Grp}(G, H)=$ group homomorphisms $G \rightarrow H$
\rightarrow Composition of homomorphisms \& identity
- Top: \rightarrow Objects: topological spaces
\rightarrow Morphisms: Top $(X, Y)=$ continuous maps $X \rightarrow Y$
\rightarrow Composition of continuous maps $\&$ identities

Examples of categories

- $\mathbb{1}$: \rightarrow Objects: a single object *
\rightarrow Morphisms: $\mathbb{1}(*, *)=\left\{1_{*}: * \rightarrow *\right\}$

Examples of categories

- $\mathbb{1}$: \rightarrow Objects: a single object *
\rightarrow Morphisms: $\mathbb{1}(*, *)=\left\{1_{*}: * \rightarrow *\right\}$
Let G be a group:
- $\underline{G}: \rightarrow$ Objects: a single object *
\rightarrow Morphisms: $\quad \underline{G}(*, *)=G$
\rightarrow Composition: group operation $* \xrightarrow{a}+\frac{b}{\longrightarrow} *=\stackrel{b a}{\longrightarrow}$ Identity: the neutral element $* \xrightarrow{\wedge_{G}} *$

Examples of categories

- $\mathbb{1}$: \rightarrow Objects: a single object *
\rightarrow Morphisms: $\mathbb{1}(*, *)=\left\{1_{*}: * \rightarrow *\right\}$
Let G be a group:
- $\underline{G}: \rightarrow$ Objects: a single object *
\rightarrow Morphisms: $\quad \underline{G}(*, *)=G$
\rightarrow composition: group operation $* \xrightarrow{a} * \xrightarrow{b} * * \xrightarrow{b a} *$
Identity: the neutral element $* \xrightarrow{1_{G}} *$
Let A be a category:
- $A^{\text {op }}: \rightarrow$ objects : the same as A
\rightarrow Morphisms: $A^{\Phi P}\left(A, A^{\prime}\right):=A\left(A^{\prime}, A\right)+$ identity and composition $A \rightarrow A^{\prime} \longrightarrow A^{\prime \prime}=A \longleftarrow A^{\prime} \longleftarrow A^{\prime \prime} \quad$ of A
«Sameness» of objects
Let A be a catesory
«Sameness» of objects
Let A be a category
- A morphism $f: A \longrightarrow B$ in A is called an isomorphism if there exists another morphism $f^{-1}: B \longrightarrow A$ such that: •
«Sameness» of objects
Let A be a category
- A morphism $f: A \longrightarrow B$ in A is called an isomorphism if there exists another morphism $f^{-1}: B \longrightarrow A$ such that: $\cdot f^{-1}=1_{B}: B \longrightarrow B$
«Sameness» of objects
Let A be a category
- A morphism $f: A \longrightarrow B$ in A is called an isomorphism if there exists another morphism $f^{-1}: B \longrightarrow A$ such that: $f^{-1}=1_{B}: B \longrightarrow B$
- $f^{-1} f=1_{A}: A \longrightarrow A$
«Sameness» of objects
Let A be a category
- A morphism $f: A \longrightarrow B$ in A is called an isomorphism if there exists another morphism $f^{-1}: B \longrightarrow A$ such that: $f^{-1}=1_{B}: B \longrightarrow B$
- $f^{-1} f=1_{A}: A \longrightarrow A$
such f^{-1} is unique and it is called the inverse of f

Sameness of objects
Let A be a category

- A morphism $f: A \longrightarrow B$ in A is called an isomorphism if there exists another morphism $f^{-1}: B \longrightarrow A$ such that: $f^{-1}=1_{B}: B \longrightarrow B$
- $f^{-1} f=1_{A}: A \longrightarrow A$

Such f^{-1} is unique and it is called the inverse of f

- Two objects A, B in A are isomorphic if there exists an isomorphism $f: A \rightarrow B$ connecting them.

《Sameness» of objects
Let A be a category

- A morphism $f: A \longrightarrow B$ in A is called an isomorphism if there exists another morphism $f^{-1}: B \longrightarrow A$ such that: $f^{-1}=1_{B}: B \longrightarrow B$

$$
\text { - } f^{-1} f=1_{A}: A \longrightarrow A
$$

such f^{-1} is unique and it is called the inverse of f

- Two objects A, B in A are isomorphic if there exists an isomorphism $f: A \rightarrow B$ connecting them.
 for all C

Sameness 》 of objects
Let A be a category

- A morphism $f: A \longrightarrow B$ in A is called an isomorphism if there exists another morphism $f^{-1}: B \longrightarrow A$ such that: $f^{-1}=1_{B}: B \longrightarrow B$
- $f^{-1} f=1_{A}: A \longrightarrow A$
such f^{-1} is unique and it is called the inverse of f
- Two objects A, B in A are isomorphic if there exists an isomorphism $f: A \rightarrow B$ connecting them.
- Isomorphic objects have the same viewpoint $A(A, C) \stackrel{-0 f^{-1}}{=} A(B, C)$ and the rest of objects see them as the same $A(C, A) \stackrel{\text { foe }}{=}$ for all C

Relating categories: functors
Let A, B be two categories. A functor

$$
F: A \longrightarrow B
$$

consists of:

Relating categories: functors
Let A, B be two categories. A functor

$$
F: A \longrightarrow B
$$

consists of:

- a function $\operatorname{obj}(A) \longrightarrow \operatorname{obj}(B): A \longmapsto F(A)$

Relating categories: functors
Let A, B be two categories. A functor

$$
F: A \longrightarrow B
$$

consists of:

- a function $\operatorname{obj}(A) \longrightarrow \operatorname{obj}(B): A \longmapsto F(A)$
- a function $A\left(A, A^{\prime}\right) \longrightarrow B\left(F(A), F\left(A^{\prime}\right)\right)$
$f \longmapsto F(f)$

Relating categories: functors
Let A, B be two categories. A functor

$$
F: A \longrightarrow B
$$

consists of:

- a function $\operatorname{obj}(A) \longrightarrow \operatorname{obj}(B): A \longmapsto F(A)$
- a function $A\left(A, A^{\prime}\right) \longrightarrow B\left(F(A), F\left(A^{\prime}\right)\right)$
$f \longmapsto F(f)$
subject to the following axioms:

Relating categories: functors
Let A, B be two categories. A functor

$$
F: A \longrightarrow B
$$

consists of:

- a function $\operatorname{obj}(A) \longrightarrow \operatorname{obj}(B): A \longmapsto F(A)$
- a function $A\left(A, A^{\prime}\right) \longrightarrow B\left(F(A), F\left(A^{\prime}\right)\right)$
$f \longmapsto F(f)$
subject to the following axioms:
- for every $A \in \operatorname{obj}(A), F\left(1_{A}\right)=1_{F(A)}$

Relating categories: functors
Let A, B be two categories. A functor

$$
F: A \longrightarrow B
$$

consists of:

- a function $\operatorname{obj}(A) \longrightarrow \operatorname{obj}(B): A \longmapsto F(A)$
- a function $A\left(A, A^{\prime}\right) \longrightarrow B\left(F(A), F\left(A^{\prime}\right)\right)$
$f \longmapsto F(f)$
subject to the following axioms:
- for every $A \in \operatorname{obj}(A), F\left(1_{A}\right)=1_{F(A)}$
- for every $A^{f} A^{\prime} \xrightarrow{g} A^{\prime \prime}$ in $A, F(g f)=F(g) F(f)$

Examples of functor

- $\begin{aligned} U: \operatorname{Grp} & \longrightarrow \text { Set } \\ & \longmapsto \\ & \longmapsto\end{aligned}$

Examples of functors

- $\mathrm{U}: \mathrm{Grp} \longrightarrow$ Set
$G \longmapsto U(G):=$ the underlying set of the group G

Examples of functor

- $U: \operatorname{Grp} \longrightarrow$ Set
$G \longmapsto U(G):=$ the underlying set of the group G
$[G \xrightarrow{f} H] \longmapsto[U(f): U(G) \longrightarrow U(H)]:=$ the underlying function of the group homomorphism f

Examples of functor

- $U: \operatorname{Grp} \longrightarrow$ Set
$G \longmapsto U(G):=$ the underlying set of the group G
$[G \xrightarrow{f} H] \longmapsto[U(f): U(G) \longrightarrow U(H)]:=$ the underlying function of the group homomorphism f
- F: Set \longrightarrow Gr

Examples of functors

- $\mathrm{U}: \mathrm{Grp} \longrightarrow$ Set
$G \longmapsto U(G):=$ the underlying set of the group G
$[G \xrightarrow{f} H] \longmapsto[U(f): U(G) \rightarrow U(H)]:=$ the underlying function of the group homomorphism f
- $F:$ Set $\longrightarrow G r p$
$X \longmapsto F(X):=$ the free group generated by the set X

Examples of functors

- $\mathrm{U}: \operatorname{Grp} \longrightarrow$ Set
$G \longmapsto U(G):=$ the underlying set of the group G $[G \stackrel{f}{\rightarrow} H] \longmapsto[U(f): U(G) \rightarrow U(H)]:=$ the underlying function of the group homomorphism f
- $F:$ Set $\longrightarrow G r p$
$X \longmapsto F(X):=$ the free group generated by the set X
$[x \stackrel{f}{,}, y] \longmapsto[F(f): F(x) \rightarrow F(y)]:=$ the group homomorphism induced by f

Examples of functors

- $\mathrm{U}: \operatorname{Grp} \longrightarrow$ Set
$G \longmapsto U(G):=$ the underlying set of the group G
$[G \xrightarrow{f} H] \longmapsto[U(f): U(G) \rightarrow U(H)]:=$ the underlying function of the group homomorphism f
- $F:$ Set $\longrightarrow G r p$
$X \longmapsto F(X):=$ the free group generated by the set X
$[x \stackrel{f}{,}, y] \longmapsto[F(f): F(x) \rightarrow F(y)]:=$ the group homomorphism $x_{1} x_{2} \mapsto f\left(x_{1}\right) f\left(x_{2}\right)$ induced by f

Examples of functor

- $H_{n}:$ Top $\longrightarrow A b \begin{gathered}\text { c category of abelian groups } \\ \text { with group homomorphisms }\end{gathered}$

Examples of functor

- $H_{n}: T o p \longrightarrow A b \begin{aligned} & \text { category of abelian groups } \\ & \text { with group homomorphisms }\end{aligned}$

$$
X \longmapsto H_{n}(X):=n^{\text {th }} \text { homology group }
$$

$$
\longmapsto
$$

Examples of functors

- $H_{n}: T o p \longrightarrow A b \begin{aligned} & \text { category of abelian groups } \\ & \text { with group homomorphisms }\end{aligned}$
$X \longmapsto H_{n}(X):=n^{\text {th }}$ homology group

$$
[x \xrightarrow{f} y] \longmapsto\left[H_{n}(f): H_{n}(X) \longrightarrow H_{n}(Y)\right]:=\begin{aligned}
& \text { induced morphism } \\
& \text { in homology }
\end{aligned}
$$

Examples of functors

- $H_{n}:$ Top $\longrightarrow A b \begin{gathered}\boxed{\text { catigory of abeliar griups }} \text { wilh group homomopphisms }\end{gathered}$
$X \longmapsto H_{n}(X):=n^{\text {th }}$ homology group
$[X \xrightarrow{f}, y] \longmapsto\left[H_{n}(f): H_{n}(X) \longrightarrow H_{n}(Y)\right]:=\begin{gathered}\text { indued morphism } \\ \text { in homolosy }\end{gathered}$ in homology
- P: Set \longrightarrow Set

Examples of functors

- $H_{n}:$ Top $\longrightarrow A b \begin{gathered}\boxed{\text { category of abeliar groups }} \text { with group homomorphisms }\end{gathered}$
$X \longmapsto H_{n}(X):=n^{\text {th }}$ homology group
$[X \xrightarrow{f}, y] \longmapsto\left[H_{n}(f): H_{n}(X) \longrightarrow H_{n}(Y)\right]:=$ induced morphism in homology
- $P:$ Set \longrightarrow Set
$X \longmapsto P(X):=$ set of subsets of X
\longmapsto

Examples of functor

- $H_{n}:$ Top $\longrightarrow A b \begin{gathered}\checkmark \text { category of abeliar groups } \\ \text { with group homomorphisms }\end{gathered}$
$X \longmapsto H_{n}(X):=n^{\text {th }}$ homology group $[x \xrightarrow[f]{f}, y] \longmapsto\left[H_{n}(f): H_{n}(X) \longrightarrow H_{n}(Y)\right]:=\begin{gathered}\text { induced morphism } \\ \text { in homology }\end{gathered}$ in homology
- $P:$ Set \longrightarrow Set
$X \longmapsto P(X):=$ set of subsets of X
$[x \xrightarrow{t}, y] \longmapsto[P(f): P(x) \rightarrow P(y)]:=$ induced function between the power sets

Examples of functor

- $H_{n}:$ Top $\longrightarrow A b \begin{gathered}\text { category of abelian groups } \\ \text { will group homomorphisms }\end{gathered}$
$X \longmapsto H_{n}(X):=n^{\text {th }}$ homology group
$[X \xrightarrow{f}, y] \longmapsto\left[H_{n}(f): H_{n}(X) \longrightarrow H_{n}(Y)\right]:=$ induced morphism in homology
- $P:$ Set \longrightarrow Set
$X \longmapsto P(X):=$ set of subsets of X
$[x \pm, y] \longmapsto[p(f): P(x) \rightarrow P(y)]:=$ induced function between the $x_{1} \leq x \mapsto\{f(x)\}_{x \in x_{1}} \subseteq y$ power sets

Examples of functors
Let G, H be groups

Examples of functor
Let G, H be groups

- F: $\underline{G} \longrightarrow \underline{H}$

$$
\begin{gathered}
o b j(\underline{G}) \longrightarrow o \operatorname{obj}_{(}(\underline{H}) \\
\underline{G}(*, *)
\end{gathered}>\underline{H}(*, *) .
$$

Examples of functors
Let G, H be groups

- F: $\underline{G} \longrightarrow \underline{H}$

Examples of functors
Let G, H be groups

- $F: \underline{G} \longrightarrow \underline{H}$
it is nothing but a group homomorphism!

Examples of functors
Let G, H be groups

- F: $\underline{G} \longrightarrow \underline{H}$

$$
\begin{aligned}
& \operatorname{obj}(\underline{G}) \longrightarrow \operatorname{obj}(\underline{H}): * \longmapsto *
\end{aligned}
$$

it is nothing but a group homomorphism!

- $F: \underline{G} \longrightarrow$ Set

$$
\begin{aligned}
& \operatorname{obj}(\underline{G}) \longrightarrow \operatorname{obj}(\operatorname{set}) \\
& \underline{G}(*, *) \longrightarrow \operatorname{Set}(F(*), F(*))
\end{aligned}
$$

Examples of functors
Let G, H be groups

- F: $\underline{G} \longrightarrow \underline{H}$

$$
\begin{aligned}
& \operatorname{obj}(\underline{G}) \longrightarrow \operatorname{obj}(\underline{H}): * \longmapsto *
\end{aligned}
$$

it is nothing but a group homomorphism!

$$
\begin{aligned}
-F: \underline{G} & \longrightarrow \operatorname{Set} \\
& o b j(\underline{G})
\end{aligned}>\operatorname{obj}(\operatorname{Set}): * \longmapsto F(*) \quad \begin{aligned}
& F\left(\Lambda_{G}\right)=1_{F(*)} \\
& G=\underline{G}(*, *)
\end{aligned}>\operatorname{Set}(F(*), F(*)): g \longmapsto F(g) \quad \text { s.t. }\left\{\begin{array}{l}
F\left(g g^{\prime}\right)=F(g) F\left(g^{\prime}\right)
\end{array}\right.
$$

Examples of functors
Let G, H be groups

- F: $\underline{G} \longrightarrow \underline{H}$

$$
\begin{aligned}
& \operatorname{obj}(\underline{G}) \longrightarrow \operatorname{obj}(\underline{H}): * \longmapsto *
\end{aligned}
$$

it is nothing but a group homomorphism!

$$
\begin{aligned}
-F: \underline{G} & \longrightarrow \operatorname{Set} \\
& o b j(\underline{G}) \longrightarrow \operatorname{obj}(\operatorname{Set}): * \longmapsto F(*) \\
G=\underline{G}(*, *) & \longrightarrow \operatorname{Set}(F(*), F(*)): g \longmapsto F(g) \quad \text { s.t. }\left\{\begin{array}{l}
F\left(\Lambda_{G}\right)=1_{F(*)} \\
F\left(g g^{\prime}\right)=F(g) F\left(g^{\prime}\right)
\end{array}\right.
\end{aligned}
$$

it is nothing but a left G-set!

Hom-functors Homs ore sets
Let A be a locally small category
We define the functor $h^{A}: A \rightarrow$ Set as follows:

$$
\begin{aligned}
\operatorname{obj}(A) & \longrightarrow \operatorname{obj}(\operatorname{Set}) \\
& \longrightarrow \\
A(B, C) & \longrightarrow \operatorname{Set}(A(A, B), A(A, C))
\end{aligned}
$$

Hom-functors Homs ore sets
Let A be a locally small category
We define the functor $h^{A}: A \rightarrow$ Set as follows:

$$
\begin{aligned}
\operatorname{obj}(A) & \longrightarrow \operatorname{obj}(\operatorname{Set}) \\
B & \longmapsto h^{A}(B):=A(A, B) \\
A(B, C) & \longrightarrow \operatorname{Set}(A(A, B), A(A, C))
\end{aligned}
$$

Hom-functors Homs are sets
Let A be a locally small category
We define the functor $h^{A}: A \rightarrow$ Set as follows:

$$
\begin{aligned}
\operatorname{obj}(A) & \longrightarrow \operatorname{abj}(\operatorname{Set}) \\
B & \longmapsto h^{A}(B):=A(A, B) \\
A(B, C) & \longrightarrow \operatorname{Set}(A(A, B), A(A, C)) \\
{[f: B \rightarrow C] } & \longrightarrow h^{A}(f): A(A, B) \longrightarrow A(A, C)
\end{aligned}
$$

Hom-functors Homs are sets
Let A be a locally small category
We define the functor $h^{A}: A \rightarrow$ Set as follows:

$$
\begin{aligned}
\operatorname{obj}(A) & \longrightarrow \operatorname{obj}(\operatorname{Set}) \\
B & \longmapsto h^{A}(B):=A(A, B) \\
A(B, C) & \longrightarrow \operatorname{Set}(A(A, B), A(A, C)) \\
{[f: B \rightarrow C] } & h^{A}(f): A(A, B) \longrightarrow A(A, C) \\
& {[g: A \rightarrow B] }
\end{aligned}>[f: A \rightarrow C] .
$$

Hom-functors Homs are sets
Let A be a locally small category
We define the functor $h^{A}: A \rightarrow$ Set as follows:

$$
\begin{aligned}
& \operatorname{obj}(A) \longrightarrow \longrightarrow b j(\operatorname{Set}) \\
& B h^{A}(B):=A(A, B) \\
& A(B, C) \longrightarrow \operatorname{Set}(A(A, B), A(A, C)) \\
& {[f: B \rightarrow C] \longmapsto } h^{A}(f): A(A, B) \longrightarrow A(A, C) \\
& {[g: A \rightarrow B] \longmapsto[f g: A \rightarrow C] }
\end{aligned}
$$

h^{A} tells us what the object A sees from the category A

Hom-functors Homs are sets
Let A be a locally small category
We define the functor $h_{A}: A^{\circ} \rightarrow$ Set as follows:

$$
\begin{aligned}
& \operatorname{obj}\left(A^{\Phi}\right) \longrightarrow \operatorname{obj}(\operatorname{Set}) \\
& B \longmapsto h_{A}(B):=A(B, A) \\
& A^{\text {oP }}(B, C)=A(C, B) \longrightarrow \operatorname{Set}(A(B, A), A(C, A)) \\
& {[f:(\rightarrow B]} h_{A}(f): A(B, A) \longrightarrow A(C, A) \\
& {[g: B \rightarrow A] \longmapsto[g f: C \rightarrow A] }
\end{aligned}
$$

Hom-functors Homs are sets
Let A be a locally small category
We define the functor $h_{A}: A^{\circ} \rightarrow$ Set as follows:

$$
\begin{aligned}
& \operatorname{obj}\left(A^{\Phi}\right) \longrightarrow \operatorname{obj}(\operatorname{Set}) \\
& B \longmapsto h_{A}(B):=A(B, A) \\
& A^{\text {op }}(B, C)=A(C, B) \longrightarrow \operatorname{Set}(A(B, A), A(C, A)) \\
& {[f:(\rightarrow B]} h_{A}(f): A(B, A) \longrightarrow A(C, A) \\
& {[g: B \rightarrow A] \longmapsto[g f: C \rightarrow A] }
\end{aligned}
$$

h_{A} tells us what the category A sees of the object A

Preserving viewpoints

- A functor $F: A \rightarrow B$ is called fully faithful if for every pair $A, B \in \operatorname{obj}(A)$ the functions

$$
A(A, B) \xrightarrow{F} B(F(A), F(B))
$$

are bijective.

- Example:

Preserving viewpoints

- A functor $F: A \rightarrow B$ is called fully faithful if for every pair $A, B \in \operatorname{obj}(A)$ the functions

$$
A(A, B) \xrightarrow{F} B(F(A), F(B))
$$

are bijective.

- Example:

$$
\begin{aligned}
& A b \stackrel{\iota}{\longrightarrow} G p \\
& G \longmapsto(G):=G \\
& {[G \stackrel{f}{\rightarrow H]} \longmapsto[(f):=f: G \longrightarrow H]}
\end{aligned}
$$

(morphisms in $A b$ are the homomorphisms of groups)

Relating functors: natural transformations
Let A, B be two locally small categories
Let F, G be two functors $A \longrightarrow B$

Relating functors: natural transformations
Let A, B be two locally small categories
Let F, G be two functors $A \longrightarrow B$

- A natural transformation $\alpha: F \Rightarrow G$ is given by a morphism $\alpha_{A}: F(A) \longrightarrow G(A)$ in B such that for all $f: A \rightarrow A^{\prime}$ in A the following diagram in B commutes

Categories of functors
Let A, B be two locally small categories
Let F, G, H be functors $A \longrightarrow B$

Categories of functors
Let A, B be two locally small categories
Let F, G, H be functors $A \longrightarrow B$

- We can compose natural transformations:

Categories of functors
Let A, B be two locally small categories
Let F, G, H be functors $A \longrightarrow B$

- We can compose natural transformations:

$$
\begin{aligned}
\alpha: F \Rightarrow G, \quad \beta: G \Rightarrow H \leadsto & \beta \alpha: F \Rightarrow H \quad \text { given by } \\
& (\beta \alpha)_{A}:=\beta_{A} \alpha_{A}: F(A) \rightarrow H(A)
\end{aligned}
$$

Categories of functors
Let A, B be two locally small categories
Let F, G, H be functors $A \longrightarrow B$

- We can compose natural transformations: $\alpha: F \Rightarrow G, \beta: G \Rightarrow H \leadsto \beta \alpha: F \Rightarrow H$ given by

$$
(\beta \alpha)_{A}:=\beta_{A} \alpha_{A}: F(A) \rightarrow H(A)
$$

- There is an identity natural transformation:

Categories of functors
Let A, B be two locally small categories
Let F, G, H be functors $A \longrightarrow B$

- We can compose natural transformations: $\alpha: F \Rightarrow G, \beta: G \Rightarrow H \leadsto \beta \alpha: F \Rightarrow H$ given by

$$
(\beta \alpha)_{A}:=\beta_{A} \alpha_{A}: F(A) \rightarrow H(A)
$$

- There is an identity natural transformation:

$$
1_{F}: F \Rightarrow F \text { given by }\left(1_{F}\right)_{A}:=1_{F(A)}
$$

Categories of functors
Let A, B be two locally small categories
Let F, G, H be functors $A \longrightarrow B$

- We can compose natural transformations:
$\alpha: F \Rightarrow G, \beta: G \Rightarrow H \leadsto \beta \alpha: F \Rightarrow H$ given by

$$
(\beta \alpha)_{A}:=\beta_{A} \alpha_{A}: F(A) \rightarrow H(A)
$$

- There is an identity natural transformation:

$$
1_{F}: F \Rightarrow F \text { given by }\left(1_{F}\right)_{A}:=1_{F(A)}
$$

- Therefore, we can form a category of functors Fun (A, B) with objects the functors and morphisms the natural transformations

Examples of natural transformations

- $\underbrace{\frac{x}{\mathbb{U} \alpha}}_{y}$ set

Examples of natural transformations

- $\underline{G_{y}} \underbrace{x}_{y}$ set

Examples of natural transformations

- $\underline{G} \underbrace{\frac{x}{y}}_{y}$ set
$\alpha_{*}: X \longrightarrow Y$ in Set st. for all $g \in \underline{G}(x, *) \quad g{\underset{X}{x}}_{G}^{\substack{G}}{ }_{\alpha_{*}}^{\alpha_{*}} y$
in other words, $\alpha_{*}(g x)=g \alpha_{*}(x) \quad \forall x \in X \forall g \in G$

Examples of natural transformations

- $\underline{G} \underbrace{\frac{x}{y}}_{y}$ set
 in other words, $\alpha_{*}(g x)=g \alpha_{*}(x) \quad \forall x \in X \forall g \in G$ $\leadsto \Delta$ this is nothing but a G-equivariant map of left G-sets!

Examples of natural transformations

- $\underline{G} \underbrace{\frac{x}{y}}_{y}$ set

in other words, $\alpha_{*}(g x)=g \alpha_{*}(x) \quad \forall x \in X \forall g \in G$
$\leadsto \Delta$ this is nothing but a G-equivariant map of left G-sets!
we have that $\operatorname{Fun}(\underline{G}$, Set $)=$ category of left G-sets + equiv. maps

Examples of natural transformations

Examples of natural transformations
 \leadsto this is nothing but a morphism in $A \Rightarrow \operatorname{Fun}(11, A)=A$.

Examples of natural transformations
 \leadsto this is nothing but a morphism in $A \Rightarrow \operatorname{Fun}(11, A)=A$.

Examples of natural transformations
 \leadsto this is nothing but a morphism in $A \Rightarrow \operatorname{Fun}(11, A)=A$.

Examples of natural transformations

\leadsto this is nothing but a morphism in $A \Rightarrow \operatorname{Fun}(11, A)=A$.

- Set $\alpha_{x}^{1}: 1_{\text {set }}^{\|}(x) \longrightarrow P(x)$ in Set

$$
x \longmapsto\{x\}
$$

for all $f: x \rightarrow y$ in Set we have $\begin{array}{r}x \xrightarrow{\alpha_{x}} P P(x) \\ f \underset{ }{\downarrow} \underset{ }{\alpha_{y}} P P(y)\end{array}$

Examples of natural transformations

- $11 \xrightarrow[\|^{\alpha} d A]{A} \quad \alpha_{*}: A \rightarrow B$ in A s.t. $\Lambda_{A} A \xrightarrow[\alpha_{*}]{\alpha^{*}} B 1_{B}^{\text {vacuous }}$
\leadsto this is nothing but a morphism in $A \Rightarrow \operatorname{Fun}(11, A)=A$.
- Set $\underbrace{1_{\text {set }}}_{P}$ Set

$$
\begin{aligned}
& x_{\|}^{x} \\
& \alpha_{x}: 1_{\text {set }}^{\prime}(X) \longrightarrow P(X) \quad \text { in Set } \\
& x \longmapsto\{x\}
\end{aligned}
$$

《Sameness》 of functors
Let A, B be categories and consider the functor category Fun (A, B).
«Sameness» of functors
Let A, B be categories and consider the functor category Fun (A, B).

- A natural isomorphism is an isomorphism in Fun (A, B).

《Sameness》 of functors
Let A, B be categories and consider the functor category Fun (A, B).

- A natural isomorphism is an isomorphism in Fun (A, B).

$$
\alpha: F \Rightarrow G, \quad \alpha^{-1}: G \Rightarrow F \quad \text { s.t. } \quad \alpha \alpha^{-1}=1_{G}, \quad \alpha^{-1} \alpha=1_{F} .
$$

《Sameness» of functors
Let A, B be categories and consider the functor category Fun (A, B).

- A natural isomorphism is an isomorphism in $\operatorname{Fun}(A, B)$.

$$
\alpha: F \Rightarrow G, \quad \alpha^{-1}: G \Rightarrow F \quad \text { st. } \quad \alpha \alpha^{-1}=1_{G}, \alpha^{-1} \alpha=1_{F}
$$

- Two functors $F, G: A \rightarrow B$ are isomorphic if they are connected by a natural isomorphism $F \stackrel{\sim}{\Rightarrow} G$.

《Sameness» of functors
Let A, B be categories and consider the functor category Fun (A, B).

- A natural isomorphism is an isomorphism in $\operatorname{Fun}(A, B)$.

$$
\alpha: F \Rightarrow G, \quad \alpha^{-1}: G \Rightarrow F \quad \text { s.t. } \quad \alpha \alpha^{-1}=1_{G}, \alpha^{-1} \alpha=1_{F}
$$

- Two functors $F, G: A \rightarrow B$ are isomorphic if they are connected by a natural isomorphism $F \stackrel{\cong}{\Rightarrow} G$.
- A natural transformation $\alpha: F \Rightarrow G$ is a natural isomorphism if and only if $\alpha_{A}: F(A) \longrightarrow G(A)$ is an isomorphism in B for all A

《Sameness» of functors
Let A, B be categories and consider the functor category Fun (A, B).

- A natural isomorphism is an isomorphism in $\operatorname{Fun}(A, B)$.

$$
\alpha: F \Rightarrow G, \quad \alpha^{-1}: G \Rightarrow F \quad \text { st. } \quad \alpha \alpha^{-1}=1_{G}, \alpha^{-1} \alpha=1_{F} .
$$

- Two functors $F, G: A \rightarrow B$ are isomorphic if they are connected by a natural isomorphism $F \stackrel{\sim}{\leftrightharpoons} G$.
- A natural transformation $\alpha: F \Rightarrow G$ is a natural isomorphism if and only if $\alpha_{A}: F(A) \longrightarrow G(A)$ is an isomorphism in D for all A
- Example: $1_{\mathrm{faVs}_{k}} \stackrel{\text { ev }}{\Longrightarrow}(-)^{* *}$ given, for all $V \in a b j\left(f o l v s_{k}\right)$, by

《Sameness» of functors
Let A, B be categories and consider the functor category Fun (A, B).

- A natural isomorphism is an isomorphism in Fun (A, B).

$$
\alpha: F \Rightarrow G, \quad \alpha^{-1}: G \Rightarrow F \quad \text { st. } \quad \alpha \alpha^{-1}=1_{G}, \alpha^{-1} \alpha=1_{F} .
$$

- Two functors $F, G: A \rightarrow B$ are isomorphic if they are connected by a natural isomorphism $F \stackrel{\sim}{\leftrightharpoons} G$.
- A natural transformation $\alpha: F \Rightarrow G$ is a natural isomorphism if and only if $\alpha_{A}: F(A) \longrightarrow G(A)$ is an isomorphism in B for all A
- Example: $1_{\text {falls }_{k}} \stackrel{\text { eva }}{\Longrightarrow}(-)^{* *}$ given, for all $V \in o b j\left(f o l v s_{k}\right)$, by

$$
V \xrightarrow{\longmapsto} \mathrm{ev}^{v} \operatorname{Hom}^{\longrightarrow}\left(V^{*}, k\right)=\operatorname{Hom}(\operatorname{Hom}(v, k), k)
$$

《Sameness» of functors
Let A, B be categories and consider the functor category Fun (A, B).

- A natural isomorphism is an isomorphism in Fun (A, B).

$$
\alpha: F \Rightarrow G, \quad \alpha^{-1}: G \Rightarrow F \quad \text { s.t. } \quad \alpha \alpha^{-1}=1_{G}, \alpha^{-1} \alpha=1_{F}
$$

- Two functors $F, G: A \rightarrow B$ are isomorphic if they are connected by a natural isomorphism $F \stackrel{\sim}{\Rightarrow} G$.
- A natural transformation $\alpha: F \Rightarrow G$ is a natural isomorphism if and only if $\alpha_{A}: F(A) \longrightarrow G(A)$ is an isomorphism in D for all A
- Example: $1_{\text {avs }_{k}} \stackrel{\text { eva }}{\Longrightarrow}(-)^{* *}$ given, for all $V \in o b j\left(f o l V s_{k}\right)$, by

$$
\begin{aligned}
V \xrightarrow{\mathrm{ev}^{v}} & H o m\left(V^{*}, k\right) \\
& {[\phi: V \rightarrow k] \underset{\mathrm{ev}_{v}^{\longrightarrow}}{\longrightarrow} \phi(v) }
\end{aligned}
$$

《Sameness» of functors
Let A, B be categories and consider the functor category Fun (A, B).

- A natural isomorphism is an isomorphism in Fun (A, B).

$$
\alpha: F \Rightarrow G, \quad \alpha^{-1}: G \Rightarrow F \quad \text { s.t. } \quad \alpha \alpha^{-1}=1_{G}, \alpha^{-1} \alpha=1_{F} .
$$

- Two functors $F, G: A \rightarrow B$ are isomorphic if they are connected by a natural isomorphism $F \stackrel{\sim}{\leftrightharpoons} G$.
- A natural transformation $\alpha: F \Rightarrow G$ is a natural isomorphism if and only if $\alpha_{A}: F(A) \longrightarrow G(A)$ is an isomorphism in D for all A
- Example: $1_{\text {avs }_{k}} \stackrel{\text { eve }}{\Longrightarrow}(-)^{* *}$ given, for all $V \in o b j\left(f o l V s_{k}\right)$, by

$$
\begin{aligned}
& V \xrightarrow[\cong]{\cong} \operatorname{Hom}\left(V^{*}, k\right)=\operatorname{Hom}(\operatorname{Hom}(V, k), k) \\
& v \longmapsto[\phi: V \rightarrow k] \underset{\text { eva }}{\longrightarrow} \phi(v)
\end{aligned}
$$

Functors encoding the viewpoint of an object
«A category is a world of objects, all looking at one another. Each sees the world from a different viewpoint >>

Functors encoding the viewpoint of an object
«A category is a world of objects, all looking at one another. Each sees the world from a different viewpoint >> Tom Leinster

- The information of what an object A of a category A sees of A is codified by the functor $h^{A}: A \longrightarrow$ Set

Functors encoding the viewpoint of an object
«A category is a world of objects, all looking at one another. Each sees the world from a different viewpoint >> Tom Leinster

- The information of what an object A of a category A sees of A is codified by the functor $h^{A}: A \longrightarrow$ Set
- The information of what the category A sees of one of its objects A is codified by the functor $h_{A}: A^{P} \longrightarrow$ Set

Functors encoding the viewpoint of an object
«A category is a world of objects, all looking at one another. Each sees the world from a different viewpoint >> Tom Leinster

- The information of what an object A of a category A Sees of A is codified by the functor $h^{A}: A \longrightarrow$ Set
- The information of what the category A sees of one of its objects A is codified by the functor $h_{A}: A^{P} \longrightarrow$ Set
- We say that a functor $F: A \longrightarrow$ Set (resp. $F: A^{o p} \longrightarrow$ Set) is representable if it is naturally isomorphic to a functor $h^{A}\left(\right.$ resp. $\left.h_{A}\right)$ for some $A \in \operatorname{obj}(A)$.

The Yoneda Lemma
Let A be a locally small category. Then, we have that

$$
\operatorname{Fun}\left(A^{\text {PP set }}\right)\left(h_{A}, F\right) \cong F(A)
$$

naturally in $A \in \operatorname{obj}(A A)$ and $F \in F$ un (A^{Q}, Set).

The Yoneda Lemma
Let A be a locally small category. Then, we have that $\operatorname{Fun}\left(A^{\text {P }}\right.$, set $)\left(h_{A}, F\right) \cong F(A)$
naturally in $A \in \operatorname{obj}(A)$) and $F \in F$ un ($A^{Q p}$, Set).

The Yoneda Lemma
Let A be a locally small category. Then, we have that $\operatorname{Fun}\left(A^{\text {P }}\right.$ set $)\left(h_{A}, F\right) \cong F(A)$
naturally in $A \in \operatorname{obj}(A A)$ and $F \in \operatorname{Fun}\left(A^{Q}\right.$, Set).

The Yoneda Lemma
Let A be a locally small category. Then, we have that

$$
\operatorname{Fun}\left(A^{\varphi \rho} \text { set }\right)\left(h_{A}, F\right) \cong F(A)
$$

naturally in $A \in \operatorname{obj}(A A)$ and $F \in F$ un ($A^{Q p}$, Set).
Sketch of the proof:

$$
\operatorname{Fun}\left(A^{A P}, \operatorname{Set}\right)\left(h_{A}, F\right) \longrightarrow F(A) \quad F(A) \longrightarrow F \operatorname{Fun}\left(A^{\text {OP }}, \operatorname{Set}\right)\left(h_{A}, F\right)
$$

The Yoneda lemma
Let A be a locally small category. Then, we have that

$$
\operatorname{Fun}\left(A^{\varphi \rho} \text { set }\right)\left(h_{A}, F\right) \cong F(A)
$$

naturally in $A \in \operatorname{obj}(A A)$ and $F \in \operatorname{Fun}\left(A^{Q}\right.$, Set).
Sketch of the proof:

$$
\begin{array}{c|l}
\operatorname{Fun}\left(A^{\text {op }}, \operatorname{Set}\right)\left(h_{A}, F\right) \longrightarrow F(A) & F(A) \longrightarrow F \operatorname{Fun}\left(A^{O P}, \operatorname{Set}\right)\left(h_{A}, F\right) \\
\alpha: h_{A} \neq F \longmapsto & \\
h_{\Delta} & \\
h_{A}(A)=A(A, A) \xrightarrow{\alpha_{A}} F(A)
\end{array}
$$

The Yoneda lemma
Let A be a locally small category. Then, we have that

$$
\operatorname{Fun}\left(A^{\varphi \rho} \text { set }\right)\left(h_{A}, F\right) \cong F(A)
$$

naturally in $A \in \operatorname{obj}(A A)$ and $F \in F$ un (A^{Q}, Set).
Sketch of the proof:

$$
\begin{aligned}
& \operatorname{Fun}\left(A^{\text {op }}, \operatorname{Set}\right)\left(h_{A}, F\right) \longrightarrow F(A) \\
& F(A) \longrightarrow \operatorname{Fun}\left(A^{\text {PP }}, \operatorname{Set}\right)\left(h_{A}, F\right) \\
& \alpha: h_{A} \Rightarrow F \longmapsto \\
& h_{A}(A)=A(A, A) \xrightarrow{\alpha_{A}} \underset{\sim}{w}(A) \\
& \Lambda_{A} \longmapsto \stackrel{(}{\alpha} \alpha_{A}\left(\Lambda_{A}\right)
\end{aligned}
$$

The Yoneda lemma
Let A be a locally small category. Then, we have that

$$
\operatorname{Fun}\left(A^{\varphi \rho} \text { set }\right)\left(h_{A}, F\right) \cong F(A)
$$

naturally in $A \in \operatorname{obj}(A)$) and $F \in$ Fun (A^{9}, set).
Sketch of the proof:

$$
\begin{aligned}
& \operatorname{Fun}\left(A^{\text {op }}, \operatorname{set}\right)\left(h_{A}, F\right) \longrightarrow F(A) \\
& F(A) \longrightarrow \operatorname{Fun}\left(A^{\text {PP }}, \operatorname{Set}\right)\left(h_{A}, F\right) \\
& \alpha: h_{A} \Rightarrow F \longmapsto \alpha_{A}\left(A_{A}\right) \\
& h_{A}(A)=A(A, A) \xrightarrow{\alpha_{A}} F(A) \\
& \Lambda_{A} \longmapsto \stackrel{(}{\alpha} \alpha_{A}\left(\Lambda_{A}\right)
\end{aligned}
$$

The Yoneda lemma
Let A be a locally small category. Then, we have that

$$
\operatorname{Fun}\left(A^{\varphi \rho} \text { set }\right)\left(h_{A}, F\right) \cong F(A)
$$

naturally in $A \in \operatorname{obj}(A A)$ and $F \in F$ un (A^{Q}, Set).
Sketch of the proof:

$$
\begin{aligned}
& \operatorname{Fun}\left(A^{\circ P}, \operatorname{Set}\right)\left(h_{A}, F\right) \longrightarrow F(A) \\
& F(A) \longrightarrow \operatorname{Fun}\left(A^{\circ P}, \operatorname{set}\right)\left(h_{A}, F\right) \\
& \alpha: h_{A} \Rightarrow F \longmapsto \alpha_{A}\left(\Lambda_{A}\right) \\
& x \longmapsto \alpha: h_{A} \Rightarrow F \\
& h_{A}(A)=\underset{\sim}{A}(A, A) \xrightarrow{\alpha_{A}} F(A) \\
& \left.\Lambda_{A} \longmapsto{ }_{\alpha}^{(}\right)\left(\Lambda_{A}\right)
\end{aligned}
$$

The Yoneda lemma
Let A be a locally small category. Then, we have that

$$
\operatorname{Fun}\left(A^{\varphi \rho} \text { set }\right)\left(h_{A}, F\right) \cong F(A)
$$

naturally in $A \in \operatorname{obj}(A)$) and $F \in$ Fun (A^{9}, set).
Sketch of the proof:

$$
\begin{aligned}
& F \operatorname{lun}\left(A^{\text {OP }}, \text { Set }\right)\left(h_{A}, F\right) \longrightarrow F(A) \\
& \alpha: h_{A} \Rightarrow F \longmapsto \alpha_{A}\left(\Lambda_{A}\right) \\
& h_{A}(A)=A(A, A) \xrightarrow{\alpha_{A}} \underset{\sim}{F}(A) \\
& \Lambda_{A} \longmapsto \alpha_{A}\left(\Lambda_{A}\right)
\end{aligned}
$$

$$
\begin{aligned}
& F(A) \longrightarrow \longrightarrow \operatorname{Fun}\left(A^{\text {PP }}, \operatorname{Set}\right)\left(h_{A}, F\right) \\
& x \longmapsto \alpha: h_{A} \Rightarrow F \\
& \alpha_{B}: A(B, A) \longrightarrow F(B) \\
& \mapsto
\end{aligned}
$$

The Yoneda lemma
Let A be a locally small category. Then, we have that

$$
\operatorname{Fun}\left(A^{\varphi \rho} \text { set }\right)\left(h_{A}, F\right) \cong F(A)
$$

naturally in $A \in \operatorname{obj}(A)$) and $F \in$ Fun (A^{9}, set).
Sketch of the proof:

$$
\begin{aligned}
F u n\left(A^{\text {op }}, \operatorname{set}\right)\left(h_{A}, F\right) & \longrightarrow F(A) \\
\alpha: h_{A}=F & \longmapsto \alpha_{A}\left(\Lambda_{A}\right) \\
\xi_{\Delta} & \\
h_{A}(A)=A(A, A) \xrightarrow{\alpha_{A}} & F(A) \\
\Lambda_{A} & \longmapsto \alpha_{A}\left(\Lambda_{A}\right)
\end{aligned}
$$

$$
\begin{aligned}
& F(A) \longrightarrow \text { Fun }\left(A^{\circ P}, \text { Set }\right)\left(h_{A}, F\right) \\
& x \longrightarrow \alpha: h_{A} \Rightarrow F \\
& \alpha_{B}: A(B, A) \longrightarrow F(B) \\
& f: B \rightarrow A \mapsto
\end{aligned}
$$

The Yoneda lemma
Let A be a locally small category. Then, we have that

$$
\operatorname{Fun}\left(A^{\varphi \rho} \text { set }\right)\left(h_{A}, F\right) \cong F(A)
$$

naturally in $A \in \operatorname{obj}(A A)$ and $F \in F$ un (A^{Q}, Set).
Sketch of the proof:

$$
\begin{aligned}
F u n\left(A^{\circ P}, \operatorname{set}\right)\left(h_{A}, F\right) & \longrightarrow F(A) \\
\alpha: h_{A}=F & \longmapsto \alpha_{A}\left(\Lambda_{A}\right) \\
\xi_{\Delta} & B \\
h_{A}(A)=A(A, A) \xrightarrow{\alpha_{A}} & F(A) \\
\Lambda_{A}^{*} & \longmapsto \alpha_{A}\left(\Lambda_{A}\right)
\end{aligned}
$$

$$
\begin{aligned}
& F(A) \longrightarrow \operatorname{Fun}\left(A^{\text {PP }}, \operatorname{Set}\right)\left(h_{A}, F\right) \\
& x \longmapsto \alpha: h_{A} \Rightarrow F \\
& \alpha_{B}: A(B, A) \rightarrow F(B) \\
& f: B \rightarrow A \mapsto \\
& \stackrel{b}{F(A) \xrightarrow{F_{f}} F} F(B)
\end{aligned}
$$

The Yoneda lemma
Let A be a locally small category. Then, we have that

$$
\operatorname{Fun}\left(A^{\varphi \rho} \text { set }\right)\left(h_{A}, F\right) \cong F(A)
$$

naturally in $A \in \operatorname{obj}(A A)$ and $F \in \operatorname{Fun}\left(A^{Q}\right.$, Set).
Sketch of the proof:

$$
\begin{aligned}
& F u n\left(A^{\text {PP }}, \text { Set }\right)\left(h_{A}, F\right) \longrightarrow F(A) \\
& \alpha: h_{A}=F \longmapsto \alpha_{A}\left(\Lambda_{A}\right) \\
&\}_{\Delta} S \\
& h_{A}(A)=A(A, A) \xrightarrow{\alpha_{A}}{ }^{(} F(A) \\
& \Lambda_{A} \longmapsto \alpha_{A}\left(\Lambda_{A}\right)
\end{aligned}
$$

$$
\begin{aligned}
& F(A) \longrightarrow \\
& x \longmapsto \text { Fun }\left(A^{\circ P}, \operatorname{Set}\right)\left(h_{A}, F\right) \\
& \alpha: h_{A} \Rightarrow F \\
& \alpha_{B}: A(B, A) \longrightarrow F(B) \\
& f: B \rightarrow A \mapsto F(f)(x) \\
& b \\
&b(A) \xrightarrow{F F}) F(B)
\end{aligned}
$$

The Yoneda embedding
Let A be a locally small category. The functor

$$
\begin{aligned}
& A \xrightarrow{Y} \\
& \underset{ }{\longmapsto} \operatorname{un}\left(A^{\Phi}, \text { Set }\right) \\
& \longmapsto
\end{aligned}
$$

is fully faithful.

The Yoneda embedding
Let A be a locally small category. The functor

$$
\begin{aligned}
& A \xrightarrow{Y} \operatorname{Fun}\left(A^{\Phi}, \text { Set }\right) \\
& A \xrightarrow{\otimes} h_{A}
\end{aligned}
$$

is fully faithful.

The Yoneda embedding
Let A be a locally small category. The functor

$$
\begin{aligned}
& A \xrightarrow{Y} \operatorname{Fun}\left(A^{\Phi P}, \text { Set }\right) \\
& A \longmapsto h_{A} \\
& A \xrightarrow{f} B \stackrel{\circledast}{\longmapsto} h_{f}: h_{A} \Rightarrow h_{B} \text { given, for all } C \in \text { obj }(A) \text {, by } \\
& \left(h_{f}\right)_{C}: A(C, A) \xrightarrow{f \circ-} A(C, B):
\end{aligned}
$$

is fully faithful.

The Yoneda embedding
Let A be a locally small category. The functor

$$
\begin{aligned}
& A \xrightarrow{Y} \\
& F \text { Fun }\left(A A^{\Phi}, \text { Set }\right) \\
& A h_{A} \\
& A \xrightarrow{f} B \longmapsto h_{f}: h_{A} \Rightarrow h_{B} \text { given, for all } \operatorname{Coobj}(A) \text {, by } \\
&\left(h_{f}\right)_{C}: A(C, A) \xrightarrow{\text { fo- }} A(C, B):[g: C \rightarrow A] \longmapsto[f g: C \rightarrow B]
\end{aligned}
$$

is fully faithful.

The Yoneda embedding
Let A be a locally small category. The functor

$$
\begin{aligned}
A & \xrightarrow{Y} \\
& F u n(A P, \text { Set }) \\
A & h_{A} \\
A \xrightarrow{f} B \longmapsto & h_{f}: h_{A} \Rightarrow h_{B} \text { given, for all } \operatorname{Cobj}(A) \text {, by } \\
& \left(h_{f}\right)_{C}: A(C, A) \xrightarrow{\text { fo- }} A(C, B):[g: C \rightarrow A] \longmapsto[f g: C \rightarrow B]
\end{aligned}
$$

is fully faithful.
Sketch of the proof
Yoneda Lemma gives us a bijection $F(A) \longrightarrow \operatorname{Fun}\left(A^{\text {op }}, \operatorname{Set}\right)\left(h_{A}, F\right)$

The Yoneda embedding
Let A be a locally small category. The functor

$$
\begin{aligned}
& A \xrightarrow{Y} \operatorname{Fun}\left(A^{\Phi}, \text { Set }\right) \\
& A \longmapsto h_{A} \\
& A \stackrel{f}{\rightarrow} B \stackrel{\circledast}{\longmapsto} h_{f}: h_{A} \Rightarrow h_{B} \text { given, for all } C \in \operatorname{obj}(A) \text {, by } \\
& \left(h_{f}\right)_{C}: A(C, A) \xrightarrow{f_{0}-} A(C, B):[g: C \rightarrow A] \longmapsto[f g: C \rightarrow B]
\end{aligned}
$$

is fully faithful.
Sketch of the proof
Yoneda Lemma gives us a bijection $F(A) \longrightarrow \operatorname{Fun}\left(A^{\text {OP }}, \operatorname{Set}\right)\left(h_{A}, F\right)$ Take $F=h_{B} \Rightarrow$

The Yoneda embedding
Let A be a locally small category. The functor

$$
\begin{aligned}
& A \xrightarrow{Y} \\
& F \text { Fun }\left(A A^{\Phi}, \text { Set }\right) \\
& A h_{A} \\
& A \xrightarrow{f} B \longmapsto h_{f}: h_{A} \Rightarrow h_{B} \text { given, for all } \operatorname{Coobj}(A) \text {, by } \\
&\left(h_{f}\right)_{C}: A(C, A) \xrightarrow{\text { fo- }} A(C, B):[g: C \rightarrow A] \longmapsto[f g: C \rightarrow B]
\end{aligned}
$$

is fully faithful.
Sketch of the proof
Yoneda Lemma gives us a bijection $F(A) \longrightarrow \operatorname{Fun}\left(A^{\text {OP }}, \operatorname{Set}\right)\left(h_{A}, F\right)$ Take $F=h_{B} \Rightarrow h_{B}(A)=A(A, B) \longrightarrow \operatorname{Fun}\left(A^{\text {op }}, \operatorname{Set}\right)\left(h_{A}, h_{B}\right)$ which is precisely the function \circledast.

Studying the inaccessible...
An object A in a category A is fully determined by what the category sees of it that is,

Studying the inaccessible...
An object A in a category A is fully determined by what the category sees of it that is, it is fully determined by h_{A}.

Studying the inaccessible...
An object A in a category A is fully determined by what the category sees of it
that is,
it is fully determined by h_{A}.
Indeed, if A sees two objects A and B as indistinguishible that is,

Studying the inaccessible...
An object A in a category A is fully determined by what the category sees of it
that is,
it is fully determined by h_{A}.
Indeed, if A sees two objects A and B as indistinguishible that is,

$$
h_{A} \cong h_{B}
$$

Studying the inaccessible...
An object A in a category A is fully determined by what the category sees of it
that is,
it is fully determined by h_{A}.
Indeed, if A sees two objects A and B as indistinguishible that is,

$$
h_{A} \cong h_{B}
$$

then, A and B are the <same>> in A that is,

Studying the inaccessible...
An object A in a category A is fully determined by what the category sees of it
that is,
it is fully determined by h_{A}.
Indeed, if A sees two objects A and B as indistinguishible that is,

$$
h_{A} \cong h_{B}
$$

then, A and B are the 《same>> in A
that is,

$$
A \cong B .
$$

Studying the inaccessible...

In general, in order to fully characterize an object $A \in \operatorname{obj}(A)$ need all the information of h_{A}

Studying the inaccessible...

In general, in order to fully characterize an object $A \in \operatorname{obj}(A)$ need all the information of h_{A}

But there are certain categories were less is required:

Studying the inaccessible...

In general, in order to fully characterize an object $A \in \operatorname{ojj}(A)$ need all the information of h_{A}

But there are certain categories were less is required: $X \in \operatorname{obj}(\operatorname{Set})$ is fully determined by $\operatorname{Set}(\{*\}, X)$

$$
\langle *\} \xrightarrow{f} X \equiv x \in X
$$

Studying the inaccessible...

In general, in order to fully characterize an object $A \in \operatorname{obj}(A)$ need all the information of h_{A}

But there are certain categories were less is required: $X \in \operatorname{dbj}(\operatorname{Set})$ is fully determined by $\operatorname{Set}(\{*\}, X)$

$$
\langle *\} \xrightarrow{f} X \quad \equiv \quad x \in X
$$

Sets are determined by their points!

Moduli spaces

- A moduli space classifying certain objects (the real numbers, triangles, vector bundles on a manifold...) is a space (topological space, manifold, abelian variety, scheme, stack...) in which each point represents one object, two non-isomorphic objects are represented by different points and objects that are <<similar>> are <<closeby>> in this space.

Moduli spaces

- A moduli space classifying certain objects (the real numbers, triangles, vector bundles on a manifold...) is a space (topological space, manifold, abelian variety, scheme, stack...) in which each point represents one object, two non-isomorphic objects are represented by different points and objects that are <similar>> are <<closeby> in this space.
Example: the real line \mathbb{R} is the moduli space dassifying the real numbers

Moduli spaces

- Problem: we want to study a moduli space M classifying certain objects. What does it look like?

Moduli spaces

- Problem: we want to study a moduli space M classifying certain objects. What does it look like?

Moduli spaces

- Problem: we want to study a moduli space M classifying certain objects. What does it look like?
$\{*\} \longrightarrow M$ sees the points of M
$[0,1] \longrightarrow M$ sees the paths of M

Moduli spaces

- Problem: we want to study a moduli space M classifying certain objects. What does it look like?
$\left.\begin{array}{l}\{*\} \longrightarrow M\end{array} \begin{array}{l}\text { sees the points of } M \\ {[0,1] \longrightarrow M}\end{array}\right\}$

Moduli spaces

- Problem: we want to study a moduli space M classifying certain objects. What does it look like?
$\left.\begin{array}{l}\{*\} \longrightarrow M\end{array} \begin{array}{l}\text { sees the points of } M \\ {[0,1] \longrightarrow M}\end{array} \begin{array}{l}\text { sees the paths of } M \\ \mathbb{R} \longrightarrow M\end{array} \quad \begin{array}{l}\text { sees the curves of } M\end{array}\right\} \begin{aligned} & \text { in a certain } \\ & \text { category of } \\ & \text { spaces space }\end{aligned}$

Moduli spaces

- Problem: we want to study a moduli space M classifying certain objects. What does it look like?
\(\left.$$
\begin{array}{l}\{*\} \longrightarrow M\end{array}
$$ $$
\begin{array}{l}\text { sees the points of } M \\
{[0,1] \longrightarrow M}\end{array}
$$ \begin{array}{l}sees the paths of M \\

\mathbb{R} \longrightarrow M\end{array} $$
\begin{array}{l}\text { sees the curves of } M\end{array}
$$\right\}\)| in a certain |
| :--- |
| category of |
| spaces space |

What Yoneda lemma is telling us is that M is fully determined by what the other spaces see of M

More general spaces
We want to build an M from what all the spaces in our category Space see:

$$
\begin{aligned}
\text { M: }: \text { Space }^{\text {op }} & \longrightarrow \text { Set } \\
X & \longmapsto \text { what } X \text { sees of } M
\end{aligned}
$$

More general spaces
We want to build an M from what all the spaces in our category Space see:
dH: Spec ${ }^{\text {op }} \longrightarrow$ Set
$X \longmapsto$ what X sees of M
if Cl is representable $\mathrm{CH} \xlongequal[\Rightarrow]{\cong} h_{M}$ we obtain our space

More general spaces
We want to build an M from what all the spaces in our category Space see:

M: Spar ${ }^{\text {op }} \longrightarrow$ Set
$X \longmapsto$ what X sees of M
if $\mathcal{C l}$ is representable $C M \stackrel{\cong}{\Rightarrow} h_{M}$ we obtain our space what if not?

More general spaces
We want to build an M from what all the spaces in our category Space see:

M: Spar ${ }^{\text {op }} \longrightarrow$ Set
$X \longmapsto$ what X sees of M
if $\mathcal{C l}$ is representable $C M \xlongequal[\Rightarrow]{\cong} h_{M}$ we obtain our space what if not? Just consider of as a space itself!

More general spaces
We want to build an M from what all the spaces in our category Space see:

M: Spar ${ }^{\text {op }} \longrightarrow$ Set
$X \longmapsto$ what X sees of M
if $\mathcal{C l}$ is representable $C M \xlongequal[\Rightarrow]{\cong} h_{M}$ we obtain our space what if not? Just consider of as a space itself! We do not see it, but we know how it is perceived by different spaces, and this is often enough to do geometry!

> Thank you for your attention

References
Books:
[Leinster, T.] Basic Category Theory
[Maclane, S.] Categories for the Working Mathematician
[Richl, E.] Category Theory in Context BLOG POST:
[Ward,M.] The Brilliance of the Yoneda Lemma

